--- license: mit base_model: papluca/xlm-roberta-base-language-detection tags: - Italian - legal ruling - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ribesstefano/RuleBert-v0.3-k3 results: [] --- # ribesstefano/RuleBert-v0.3-k3 This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3332 - F1: 0.4507 - Roc Auc: 0.6503 - Accuracy: 0.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4445 | 0.06 | 250 | 0.4053 | 0.4824 | 0.6769 | 0.0 | | 0.3665 | 0.12 | 500 | 0.3428 | 0.4528 | 0.6516 | 0.0714 | | 0.3587 | 0.18 | 750 | 0.3332 | 0.4507 | 0.6503 | 0.0714 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0