Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .ipynb_checkpoints/transformer-checkpoint.ipynb +489 -0
- data.txt +0 -0
- harry_potter_transformer.keras +3 -0
- transformer.ipynb +489 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
harry_potter_transformer.keras filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/transformer-checkpoint.ipynb
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "7c710f0a-59f2-445c-9464-d702fe44fe7a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Num GPUs Available: 1\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"import tensorflow as tf\n",
|
19 |
+
"print(\"Num GPUs Available:\", len(tf.config.list_physical_devices('GPU')))"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 3,
|
25 |
+
"id": "33d41ac0-0a70-4b7f-9c00-5b1bcbcd1c9d",
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"import numpy as np\n",
|
30 |
+
"import tensorflow as tf\n",
|
31 |
+
"from tensorflow.keras.preprocessing.text import Tokenizer"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 4,
|
37 |
+
"id": "2e794897-5d68-44e5-bc1a-111a6232ce26",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"name": "stdout",
|
42 |
+
"output_type": "stream",
|
43 |
+
"text": [
|
44 |
+
"/opt/miniconda3/envs/tf-metal2/bin/python\n"
|
45 |
+
]
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"source": [
|
49 |
+
"import sys\n",
|
50 |
+
"print(sys.executable)"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 5,
|
56 |
+
"id": "8c8b6b39-3b6a-4e85-b446-2c5acacbd3e0",
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [
|
59 |
+
{
|
60 |
+
"ename": "FileNotFoundError",
|
61 |
+
"evalue": "[Errno 2] No such file or directory: '1.txt'",
|
62 |
+
"output_type": "error",
|
63 |
+
"traceback": [
|
64 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
65 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
66 |
+
"Cell \u001b[0;32mIn[5], line 6\u001b[0m\n\u001b[1;32m 3\u001b[0m data \u001b[38;5;241m=\u001b[39m f\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data\n\u001b[0;32m----> 6\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mload_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m1.txt\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mlower()\n",
|
67 |
+
"Cell \u001b[0;32mIn[5], line 2\u001b[0m, in \u001b[0;36mload_data\u001b[0;34m(file_path)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mload_data\u001b[39m(file_path):\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mfile_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mr\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[1;32m 3\u001b[0m data \u001b[38;5;241m=\u001b[39m f\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data\n",
|
68 |
+
"File \u001b[0;32m/opt/miniconda3/envs/tf-metal2/lib/python3.9/site-packages/IPython/core/interactiveshell.py:310\u001b[0m, in \u001b[0;36m_modified_open\u001b[0;34m(file, *args, **kwargs)\u001b[0m\n\u001b[1;32m 303\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m2\u001b[39m}:\n\u001b[1;32m 304\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 305\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIPython won\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt let you open fd=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m by default \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 306\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mas it is likely to crash IPython. If you know what you are doing, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 307\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myou can use builtins\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m open.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 308\u001b[0m )\n\u001b[0;32m--> 310\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mio_open\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
69 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '1.txt'"
|
70 |
+
]
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"source": [
|
74 |
+
"def load_data(file_path):\n",
|
75 |
+
" with open(file_path, 'r') as f:\n",
|
76 |
+
" data = f.read()\n",
|
77 |
+
" return data\n",
|
78 |
+
"\n",
|
79 |
+
"data = load_data('data.txt').lower()"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": null,
|
85 |
+
"id": "573b0963-aa70-44de-86ab-33ba19d5148a",
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"tokenizer = Tokenizer(oov_token='<OOV>')\n",
|
90 |
+
"tokenizer.fit_on_texts([data])\n",
|
91 |
+
"total_words_in_dict = len(tokenizer.word_index) + 1\n",
|
92 |
+
"total_words_in_dict"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"id": "cda10ef1-d1c2-4025-b66f-7d2325526df9",
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"tokenizer.word_index['<OOV>'], tokenizer.word_index['harry']"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": null,
|
108 |
+
"id": "8d52769c-58d8-4ea2-a4e0-9664d5a2da9d",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"# tokens basically is the entire text from first to last converted into their\n",
|
113 |
+
"# index representation\n",
|
114 |
+
"tokens = tokenizer.texts_to_sequences([data])[0]"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"id": "03976234-376f-4b24-bab0-a7040c6760a3",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"# this creates lists of length 51 (seq_len + 1)\n",
|
125 |
+
"# 1-51, 2-52, 3-53, etc.\n",
|
126 |
+
"# 51 so that the last value is used as y\n",
|
127 |
+
"seq_length = 50\n",
|
128 |
+
"input_sequences = []\n",
|
129 |
+
"for i in range(seq_length, len(tokens)):\n",
|
130 |
+
" input_sequences.append(tokens[i - seq_length: i + 1])"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"id": "e49c6da4-64c0-4bc7-9526-6f3df699002a",
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"# this ensures all the lists are of same length\n",
|
141 |
+
"# here as well we need seq_len + 1 as the previous block\n",
|
142 |
+
"from tensorflow.keras.utils import pad_sequences\n",
|
143 |
+
"\n",
|
144 |
+
"final_input = np.array(pad_sequences(input_sequences, maxlen=seq_length + 1, padding='pre'))\n",
|
145 |
+
"final_input[0]"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": "83639aac-6ad1-4494-ac0c-b54a59e39025",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"# create x and y, last value of each list is the prediction\n",
|
156 |
+
"# imagine sliding window\n",
|
157 |
+
"X, y = final_input[:, :-1], final_input[:, -1]\n",
|
158 |
+
"print('X : ', X[0], 'Y: ', y[0])"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"id": "70d67b34-401d-425a-bc37-3b58863ccc4c",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"# if you print y, it will be integer values like 46, 274, etc.\n",
|
169 |
+
"# we need categorical, also it can belong to any word from the entire\n",
|
170 |
+
"# dict , we will generate probs and find crossentropy\n",
|
171 |
+
"y = tf.keras.utils.to_categorical(y, num_classes=total_words_in_dict)\n",
|
172 |
+
"y[0], y.shape"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": null,
|
178 |
+
"id": "a8678c88-b1fa-4d0b-9be6-e3fb27413d17",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"# the shape will be number of lists x seq_len\n",
|
183 |
+
"X.shape, y.shape"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": null,
|
189 |
+
"id": "3b03bba6-6819-4282-b2e2-5d5219905eda",
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [],
|
192 |
+
"source": [
|
193 |
+
"from tensorflow.keras.layers import Layer, Dense, LayerNormalization, Dropout, Embedding\n",
|
194 |
+
"\n",
|
195 |
+
"class MultiHeadAttention(Layer):\n",
|
196 |
+
" def __init__(self, seq_length, num_heads, embed_dim):\n",
|
197 |
+
" super(MultiHeadAttention, self).__init__()\n",
|
198 |
+
"\n",
|
199 |
+
" self.seq_length = seq_length\n",
|
200 |
+
" self.num_heads = num_heads\n",
|
201 |
+
" self.embed_dim = embed_dim\n",
|
202 |
+
"\n",
|
203 |
+
" self.projection_dim = embed_dim // num_heads\n",
|
204 |
+
"\n",
|
205 |
+
" self.query = Dense(embed_dim)\n",
|
206 |
+
" self.key = Dense(embed_dim)\n",
|
207 |
+
" self.value = Dense(embed_dim)\n",
|
208 |
+
"\n",
|
209 |
+
" # need this to learn the interaction between the features learnt by all\n",
|
210 |
+
" # the different heads\n",
|
211 |
+
" self.combine_heads_layer = Dense(embed_dim)\n",
|
212 |
+
"\n",
|
213 |
+
" def split_heads(self, input):\n",
|
214 |
+
" batch_size = tf.shape(input)[0]\n",
|
215 |
+
" x = tf.reshape(input, (batch_size, -1, self.num_heads, self.projection_dim))\n",
|
216 |
+
" return tf.transpose(x, perm=[0, 2, 1, 3])\n",
|
217 |
+
"\n",
|
218 |
+
" def self_attention(self, query, key, value):\n",
|
219 |
+
" score = tf.matmul(query, key, transpose_b=True)\n",
|
220 |
+
" scaled_score = score / tf.math.sqrt(tf.cast(self.projection_dim, tf.float32))\n",
|
221 |
+
" weights = tf.nn.softmax(scaled_score, axis=-1) # row wise in QKt\n",
|
222 |
+
"\n",
|
223 |
+
" return tf.matmul(weights, value), weights\n",
|
224 |
+
"\n",
|
225 |
+
"\n",
|
226 |
+
" def call(self, x):\n",
|
227 |
+
" batch_size = tf.shape(x)[0]\n",
|
228 |
+
"\n",
|
229 |
+
" # finds the weights matrix then split across heads\n",
|
230 |
+
" # it is more efficient computationally if we find the weight matrix\n",
|
231 |
+
" # across all the heads first then split to find individual attention scores\n",
|
232 |
+
" query = self.split_heads(self.query(x))\n",
|
233 |
+
" key = self.split_heads(self.key(x))\n",
|
234 |
+
" value = self.split_heads(self.value(x))\n",
|
235 |
+
"\n",
|
236 |
+
" attention, _ = self.self_attention(query, key, value)\n",
|
237 |
+
" # attention is of size [batch_size, num_heads, seq_length, proj_dim]\n",
|
238 |
+
"\n",
|
239 |
+
" attention = tf.transpose(attention, perm=[0, 2, 1, 3])\n",
|
240 |
+
" # attention is of size [batch_size, seq_length, num_heads, proj_dim]\n",
|
241 |
+
"\n",
|
242 |
+
" concat_attention = tf.reshape(attention, (batch_size, -1, embed_dim))\n",
|
243 |
+
"\n",
|
244 |
+
" return self.combine_heads_layer(concat_attention)\n",
|
245 |
+
"\n",
|
246 |
+
"\n",
|
247 |
+
"\n",
|
248 |
+
"class TransformerBlock(Layer):\n",
|
249 |
+
" def __init__(self, seq_length, embed_dim, ffn_dim):\n",
|
250 |
+
" super(TransformerBlock, self).__init__()\n",
|
251 |
+
"\n",
|
252 |
+
" self.seq_length = seq_length\n",
|
253 |
+
" self.embed_dim = embed_dim\n",
|
254 |
+
" self.ffn = tf.keras.Sequential([\n",
|
255 |
+
" Dense(ffn_dim, activation='relu'),\n",
|
256 |
+
" Dense(embed_dim)\n",
|
257 |
+
" ])\n",
|
258 |
+
"\n",
|
259 |
+
" self.attn = MultiHeadAttention(seq_length, 8, embed_dim)\n",
|
260 |
+
"\n",
|
261 |
+
" self.LayerNorm1 = LayerNormalization(epsilon=1e-6) # prevent divide by 0\n",
|
262 |
+
" self.LayerNorm2 = LayerNormalization(epsilon=1e-6)\n",
|
263 |
+
"\n",
|
264 |
+
" self.Drop1 = Dropout(0.1)\n",
|
265 |
+
" self.Drop2 = Dropout(0.1)\n",
|
266 |
+
"\n",
|
267 |
+
"\n",
|
268 |
+
" def call(self, x, isTraining):\n",
|
269 |
+
" attention_output = self.attn(x)\n",
|
270 |
+
" print(attention_output.shape)\n",
|
271 |
+
" x = self.LayerNorm1(x + self.Drop1(attention_output, training=isTraining))\n",
|
272 |
+
" ffn_output = self.ffn(x)\n",
|
273 |
+
" x = self.LayerNorm2(x + self.Drop2(ffn_output, training=isTraining))\n",
|
274 |
+
" return x\n",
|
275 |
+
"\n",
|
276 |
+
"class TokenAndPositionEmbedding(Layer):\n",
|
277 |
+
" def __init__(self, seq_length, total_words_in_dict, embed_dim):\n",
|
278 |
+
" super(TokenAndPositionEmbedding, self).__init__()\n",
|
279 |
+
"\n",
|
280 |
+
" self.seq_length = seq_length\n",
|
281 |
+
" self.emb = Embedding(input_dim=total_words_in_dict, output_dim=embed_dim)\n",
|
282 |
+
" self.pos_emb = Embedding(input_dim=seq_length, output_dim=embed_dim)\n",
|
283 |
+
"\n",
|
284 |
+
" def call(self, x):\n",
|
285 |
+
" positions = tf.range(start=0, limit=self.seq_length, delta=1)\n",
|
286 |
+
" positions = self.pos_emb(positions)\n",
|
287 |
+
" x = self.emb(x)\n",
|
288 |
+
" return x + positions"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": null,
|
294 |
+
"id": "19e33d70-6984-44c2-bfe2-f525444bdf01",
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"ff_dim = 512\n",
|
299 |
+
"embed_dim = 256\n",
|
300 |
+
"\n",
|
301 |
+
" # This is a placeholder in functional api style\n",
|
302 |
+
" # batch_size is taken during .fit() phase\n",
|
303 |
+
"input_placeholder = tf.keras.Input(shape=(seq_length,))\n",
|
304 |
+
"input_placeholder.shape\n",
|
305 |
+
"tokenPosLayer = TokenAndPositionEmbedding(seq_length, total_words_in_dict, embed_dim)\n",
|
306 |
+
"x = tokenPosLayer(input_placeholder) # call isn't run yet, just a link created\n",
|
307 |
+
"\n",
|
308 |
+
"transformerBlock = TransformerBlock(seq_length, embed_dim, ff_dim)\n",
|
309 |
+
"print(x.shape)\n",
|
310 |
+
"\n",
|
311 |
+
"# x contains contextualized data, now the last row of the seq_len holds\n",
|
312 |
+
"# the latest context hence it is extract out\n",
|
313 |
+
"x = x[:, -1, :]\n",
|
314 |
+
"print(x.shape) # batch_size, last_row, embed_dim\n",
|
315 |
+
"\n",
|
316 |
+
"# we pass this context to a dense layer to learn how to make predictions\n",
|
317 |
+
"x = Dense(total_words_in_dict, activation='softmax')(x)\n",
|
318 |
+
"# batch_size, total_words (prediction)\n",
|
319 |
+
"# prediction happens batch wise in parallel and is compared to y\n",
|
320 |
+
"# batch wise in parallel\n",
|
321 |
+
"\n",
|
322 |
+
"print(x.shape)\n",
|
323 |
+
"\n",
|
324 |
+
"model = tf.keras.Model(inputs=input_placeholder, outputs=x)\n",
|
325 |
+
"model.summary()"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": null,
|
331 |
+
"id": "1f60878b-6e12-4dcd-ab89-03a64e7a3367",
|
332 |
+
"metadata": {},
|
333 |
+
"outputs": [],
|
334 |
+
"source": [
|
335 |
+
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
+
"id": "5e688417-13f5-41c7-b98e-c4b4330ef363",
|
342 |
+
"metadata": {},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"\n",
|
346 |
+
"import time\n",
|
347 |
+
"\n",
|
348 |
+
"\n",
|
349 |
+
"# CPU Benchmark\n",
|
350 |
+
"with tf.device('/CPU:0'):\n",
|
351 |
+
" start = time.time()\n",
|
352 |
+
" model.fit(X, y, batch_size=32, epochs=10)\n",
|
353 |
+
" print(\"CPU Time:\", time.time() - start)\n",
|
354 |
+
"\n",
|
355 |
+
"\n"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"cell_type": "code",
|
360 |
+
"execution_count": null,
|
361 |
+
"id": "7fb4552b-86cc-461c-8a9a-572f5bfd869b",
|
362 |
+
"metadata": {},
|
363 |
+
"outputs": [],
|
364 |
+
"source": [
|
365 |
+
"# # GPU Benchmark\n",
|
366 |
+
"# with tf.device('/GPU:0'):\n",
|
367 |
+
"# start = time.time()\n",
|
368 |
+
"# rnn.fit(X, y, batch_size=1024, epochs=10)\n",
|
369 |
+
"# print(\"GPU Time:\", time.time() - start)"
|
370 |
+
]
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"cell_type": "code",
|
374 |
+
"execution_count": null,
|
375 |
+
"id": "7659d823-faf4-4908-9a0c-bd18b076c240",
|
376 |
+
"metadata": {},
|
377 |
+
"outputs": [],
|
378 |
+
"source": [
|
379 |
+
"def predict_next_word(seed_text, num_words_to_predict, max_len):\n",
|
380 |
+
" for _ in range(num_words_to_predict):\n",
|
381 |
+
" seed_list = tokenizer.texts_to_sequences([seed_text])[0]\n",
|
382 |
+
" seed_list = pad_sequences([seed_list], maxlen=max_len - 1, padding='pre')\n",
|
383 |
+
" prediction = model.predict(seed_list, verbose=0)\n",
|
384 |
+
" # prediction is an embed_dim array of probabilities\n",
|
385 |
+
" max_pred_index = np.argmax(prediction)\n",
|
386 |
+
" seed_text+= \" \" + tokenizer.index_word[max_pred_index]\n",
|
387 |
+
"\n",
|
388 |
+
" return seed_text"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": null,
|
394 |
+
"id": "2dbbd786-5318-4172-9542-e56658ef79ba",
|
395 |
+
"metadata": {},
|
396 |
+
"outputs": [],
|
397 |
+
"source": [
|
398 |
+
"predict_next_word(\"who is harry is a \", 25, seq_length + 1)"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"cell_type": "code",
|
403 |
+
"execution_count": null,
|
404 |
+
"id": "6751aa4b-2d22-47a2-9f17-f557f78c6f45",
|
405 |
+
"metadata": {},
|
406 |
+
"outputs": [],
|
407 |
+
"source": [
|
408 |
+
"!pip install huggingface_hub"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": null,
|
414 |
+
"id": "99e980a6-8686-4dd8-b26c-25a5542451b5",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [],
|
417 |
+
"source": [
|
418 |
+
"model.save(\"harry_potter_transformer.keras\")"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": null,
|
424 |
+
"id": "d766fad6-e4be-4b97-9617-53a03661cb41",
|
425 |
+
"metadata": {
|
426 |
+
"scrolled": true
|
427 |
+
},
|
428 |
+
"outputs": [],
|
429 |
+
"source": [
|
430 |
+
"from huggingface_hub import notebook_login\n",
|
431 |
+
"\n",
|
432 |
+
"notebook_login()"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"id": "9171eefc-9952-42c6-8b00-9e7f9f6f6f58",
|
439 |
+
"metadata": {},
|
440 |
+
"outputs": [],
|
441 |
+
"source": [
|
442 |
+
"from huggingface_hub import HfApi\n",
|
443 |
+
"\n",
|
444 |
+
"repo_id = \"ramanhyd99/harry-potter-transformer\"\n",
|
445 |
+
"api = HfApi()\n",
|
446 |
+
"api.create_repo(repo_id=repo_id, exist_ok=True)\n"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": null,
|
452 |
+
"id": "bab81223-1667-463c-9075-9ab00958b22c",
|
453 |
+
"metadata": {},
|
454 |
+
"outputs": [],
|
455 |
+
"source": [
|
456 |
+
"# Push the model to HF中国镜像站 Hub\n",
|
457 |
+
"from huggingface_hub import upload_folder\n",
|
458 |
+
"\n",
|
459 |
+
"upload_folder(\n",
|
460 |
+
" folder_path=\"\",\n",
|
461 |
+
" path_in_repo=\".\",\n",
|
462 |
+
" repo_id=repo_id,\n",
|
463 |
+
" repo_type=\"model\"\n",
|
464 |
+
")"
|
465 |
+
]
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"metadata": {
|
469 |
+
"kernelspec": {
|
470 |
+
"display_name": "Python (tf-metal2)",
|
471 |
+
"language": "python",
|
472 |
+
"name": "tf-metal2"
|
473 |
+
},
|
474 |
+
"language_info": {
|
475 |
+
"codemirror_mode": {
|
476 |
+
"name": "ipython",
|
477 |
+
"version": 3
|
478 |
+
},
|
479 |
+
"file_extension": ".py",
|
480 |
+
"mimetype": "text/x-python",
|
481 |
+
"name": "python",
|
482 |
+
"nbconvert_exporter": "python",
|
483 |
+
"pygments_lexer": "ipython3",
|
484 |
+
"version": "3.9.21"
|
485 |
+
}
|
486 |
+
},
|
487 |
+
"nbformat": 4,
|
488 |
+
"nbformat_minor": 5
|
489 |
+
}
|
data.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
harry_potter_transformer.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:653c6ee2695012b436f255ea782a2feb81483cef09ad86bbf616dcfbd3d9ae2f
|
3 |
+
size 41198299
|
transformer.ipynb
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "7c710f0a-59f2-445c-9464-d702fe44fe7a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Num GPUs Available: 1\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"import tensorflow as tf\n",
|
19 |
+
"print(\"Num GPUs Available:\", len(tf.config.list_physical_devices('GPU')))"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 3,
|
25 |
+
"id": "33d41ac0-0a70-4b7f-9c00-5b1bcbcd1c9d",
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"import numpy as np\n",
|
30 |
+
"import tensorflow as tf\n",
|
31 |
+
"from tensorflow.keras.preprocessing.text import Tokenizer"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 4,
|
37 |
+
"id": "2e794897-5d68-44e5-bc1a-111a6232ce26",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"name": "stdout",
|
42 |
+
"output_type": "stream",
|
43 |
+
"text": [
|
44 |
+
"/opt/miniconda3/envs/tf-metal2/bin/python\n"
|
45 |
+
]
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"source": [
|
49 |
+
"import sys\n",
|
50 |
+
"print(sys.executable)"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 5,
|
56 |
+
"id": "8c8b6b39-3b6a-4e85-b446-2c5acacbd3e0",
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [
|
59 |
+
{
|
60 |
+
"ename": "FileNotFoundError",
|
61 |
+
"evalue": "[Errno 2] No such file or directory: '1.txt'",
|
62 |
+
"output_type": "error",
|
63 |
+
"traceback": [
|
64 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
65 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
66 |
+
"Cell \u001b[0;32mIn[5], line 6\u001b[0m\n\u001b[1;32m 3\u001b[0m data \u001b[38;5;241m=\u001b[39m f\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data\n\u001b[0;32m----> 6\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mload_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m1.txt\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mlower()\n",
|
67 |
+
"Cell \u001b[0;32mIn[5], line 2\u001b[0m, in \u001b[0;36mload_data\u001b[0;34m(file_path)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mload_data\u001b[39m(file_path):\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mfile_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mr\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[1;32m 3\u001b[0m data \u001b[38;5;241m=\u001b[39m f\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m data\n",
|
68 |
+
"File \u001b[0;32m/opt/miniconda3/envs/tf-metal2/lib/python3.9/site-packages/IPython/core/interactiveshell.py:310\u001b[0m, in \u001b[0;36m_modified_open\u001b[0;34m(file, *args, **kwargs)\u001b[0m\n\u001b[1;32m 303\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m file \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m2\u001b[39m}:\n\u001b[1;32m 304\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 305\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIPython won\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt let you open fd=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m by default \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 306\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mas it is likely to crash IPython. If you know what you are doing, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 307\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myou can use builtins\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m open.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 308\u001b[0m )\n\u001b[0;32m--> 310\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mio_open\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
69 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '1.txt'"
|
70 |
+
]
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"source": [
|
74 |
+
"def load_data(file_path):\n",
|
75 |
+
" with open(file_path, 'r') as f:\n",
|
76 |
+
" data = f.read()\n",
|
77 |
+
" return data\n",
|
78 |
+
"\n",
|
79 |
+
"data = load_data('data.txt').lower()"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": null,
|
85 |
+
"id": "573b0963-aa70-44de-86ab-33ba19d5148a",
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"tokenizer = Tokenizer(oov_token='<OOV>')\n",
|
90 |
+
"tokenizer.fit_on_texts([data])\n",
|
91 |
+
"total_words_in_dict = len(tokenizer.word_index) + 1\n",
|
92 |
+
"total_words_in_dict"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"id": "cda10ef1-d1c2-4025-b66f-7d2325526df9",
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"tokenizer.word_index['<OOV>'], tokenizer.word_index['harry']"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": null,
|
108 |
+
"id": "8d52769c-58d8-4ea2-a4e0-9664d5a2da9d",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"# tokens basically is the entire text from first to last converted into their\n",
|
113 |
+
"# index representation\n",
|
114 |
+
"tokens = tokenizer.texts_to_sequences([data])[0]"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"id": "03976234-376f-4b24-bab0-a7040c6760a3",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"# this creates lists of length 51 (seq_len + 1)\n",
|
125 |
+
"# 1-51, 2-52, 3-53, etc.\n",
|
126 |
+
"# 51 so that the last value is used as y\n",
|
127 |
+
"seq_length = 50\n",
|
128 |
+
"input_sequences = []\n",
|
129 |
+
"for i in range(seq_length, len(tokens)):\n",
|
130 |
+
" input_sequences.append(tokens[i - seq_length: i + 1])"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"id": "e49c6da4-64c0-4bc7-9526-6f3df699002a",
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"# this ensures all the lists are of same length\n",
|
141 |
+
"# here as well we need seq_len + 1 as the previous block\n",
|
142 |
+
"from tensorflow.keras.utils import pad_sequences\n",
|
143 |
+
"\n",
|
144 |
+
"final_input = np.array(pad_sequences(input_sequences, maxlen=seq_length + 1, padding='pre'))\n",
|
145 |
+
"final_input[0]"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": "83639aac-6ad1-4494-ac0c-b54a59e39025",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"# create x and y, last value of each list is the prediction\n",
|
156 |
+
"# imagine sliding window\n",
|
157 |
+
"X, y = final_input[:, :-1], final_input[:, -1]\n",
|
158 |
+
"print('X : ', X[0], 'Y: ', y[0])"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"id": "70d67b34-401d-425a-bc37-3b58863ccc4c",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"# if you print y, it will be integer values like 46, 274, etc.\n",
|
169 |
+
"# we need categorical, also it can belong to any word from the entire\n",
|
170 |
+
"# dict , we will generate probs and find crossentropy\n",
|
171 |
+
"y = tf.keras.utils.to_categorical(y, num_classes=total_words_in_dict)\n",
|
172 |
+
"y[0], y.shape"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": null,
|
178 |
+
"id": "a8678c88-b1fa-4d0b-9be6-e3fb27413d17",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"# the shape will be number of lists x seq_len\n",
|
183 |
+
"X.shape, y.shape"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": null,
|
189 |
+
"id": "3b03bba6-6819-4282-b2e2-5d5219905eda",
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [],
|
192 |
+
"source": [
|
193 |
+
"from tensorflow.keras.layers import Layer, Dense, LayerNormalization, Dropout, Embedding\n",
|
194 |
+
"\n",
|
195 |
+
"class MultiHeadAttention(Layer):\n",
|
196 |
+
" def __init__(self, seq_length, num_heads, embed_dim):\n",
|
197 |
+
" super(MultiHeadAttention, self).__init__()\n",
|
198 |
+
"\n",
|
199 |
+
" self.seq_length = seq_length\n",
|
200 |
+
" self.num_heads = num_heads\n",
|
201 |
+
" self.embed_dim = embed_dim\n",
|
202 |
+
"\n",
|
203 |
+
" self.projection_dim = embed_dim // num_heads\n",
|
204 |
+
"\n",
|
205 |
+
" self.query = Dense(embed_dim)\n",
|
206 |
+
" self.key = Dense(embed_dim)\n",
|
207 |
+
" self.value = Dense(embed_dim)\n",
|
208 |
+
"\n",
|
209 |
+
" # need this to learn the interaction between the features learnt by all\n",
|
210 |
+
" # the different heads\n",
|
211 |
+
" self.combine_heads_layer = Dense(embed_dim)\n",
|
212 |
+
"\n",
|
213 |
+
" def split_heads(self, input):\n",
|
214 |
+
" batch_size = tf.shape(input)[0]\n",
|
215 |
+
" x = tf.reshape(input, (batch_size, -1, self.num_heads, self.projection_dim))\n",
|
216 |
+
" return tf.transpose(x, perm=[0, 2, 1, 3])\n",
|
217 |
+
"\n",
|
218 |
+
" def self_attention(self, query, key, value):\n",
|
219 |
+
" score = tf.matmul(query, key, transpose_b=True)\n",
|
220 |
+
" scaled_score = score / tf.math.sqrt(tf.cast(self.projection_dim, tf.float32))\n",
|
221 |
+
" weights = tf.nn.softmax(scaled_score, axis=-1) # row wise in QKt\n",
|
222 |
+
"\n",
|
223 |
+
" return tf.matmul(weights, value), weights\n",
|
224 |
+
"\n",
|
225 |
+
"\n",
|
226 |
+
" def call(self, x):\n",
|
227 |
+
" batch_size = tf.shape(x)[0]\n",
|
228 |
+
"\n",
|
229 |
+
" # finds the weights matrix then split across heads\n",
|
230 |
+
" # it is more efficient computationally if we find the weight matrix\n",
|
231 |
+
" # across all the heads first then split to find individual attention scores\n",
|
232 |
+
" query = self.split_heads(self.query(x))\n",
|
233 |
+
" key = self.split_heads(self.key(x))\n",
|
234 |
+
" value = self.split_heads(self.value(x))\n",
|
235 |
+
"\n",
|
236 |
+
" attention, _ = self.self_attention(query, key, value)\n",
|
237 |
+
" # attention is of size [batch_size, num_heads, seq_length, proj_dim]\n",
|
238 |
+
"\n",
|
239 |
+
" attention = tf.transpose(attention, perm=[0, 2, 1, 3])\n",
|
240 |
+
" # attention is of size [batch_size, seq_length, num_heads, proj_dim]\n",
|
241 |
+
"\n",
|
242 |
+
" concat_attention = tf.reshape(attention, (batch_size, -1, embed_dim))\n",
|
243 |
+
"\n",
|
244 |
+
" return self.combine_heads_layer(concat_attention)\n",
|
245 |
+
"\n",
|
246 |
+
"\n",
|
247 |
+
"\n",
|
248 |
+
"class TransformerBlock(Layer):\n",
|
249 |
+
" def __init__(self, seq_length, embed_dim, ffn_dim):\n",
|
250 |
+
" super(TransformerBlock, self).__init__()\n",
|
251 |
+
"\n",
|
252 |
+
" self.seq_length = seq_length\n",
|
253 |
+
" self.embed_dim = embed_dim\n",
|
254 |
+
" self.ffn = tf.keras.Sequential([\n",
|
255 |
+
" Dense(ffn_dim, activation='relu'),\n",
|
256 |
+
" Dense(embed_dim)\n",
|
257 |
+
" ])\n",
|
258 |
+
"\n",
|
259 |
+
" self.attn = MultiHeadAttention(seq_length, 8, embed_dim)\n",
|
260 |
+
"\n",
|
261 |
+
" self.LayerNorm1 = LayerNormalization(epsilon=1e-6) # prevent divide by 0\n",
|
262 |
+
" self.LayerNorm2 = LayerNormalization(epsilon=1e-6)\n",
|
263 |
+
"\n",
|
264 |
+
" self.Drop1 = Dropout(0.1)\n",
|
265 |
+
" self.Drop2 = Dropout(0.1)\n",
|
266 |
+
"\n",
|
267 |
+
"\n",
|
268 |
+
" def call(self, x, isTraining):\n",
|
269 |
+
" attention_output = self.attn(x)\n",
|
270 |
+
" print(attention_output.shape)\n",
|
271 |
+
" x = self.LayerNorm1(x + self.Drop1(attention_output, training=isTraining))\n",
|
272 |
+
" ffn_output = self.ffn(x)\n",
|
273 |
+
" x = self.LayerNorm2(x + self.Drop2(ffn_output, training=isTraining))\n",
|
274 |
+
" return x\n",
|
275 |
+
"\n",
|
276 |
+
"class TokenAndPositionEmbedding(Layer):\n",
|
277 |
+
" def __init__(self, seq_length, total_words_in_dict, embed_dim):\n",
|
278 |
+
" super(TokenAndPositionEmbedding, self).__init__()\n",
|
279 |
+
"\n",
|
280 |
+
" self.seq_length = seq_length\n",
|
281 |
+
" self.emb = Embedding(input_dim=total_words_in_dict, output_dim=embed_dim)\n",
|
282 |
+
" self.pos_emb = Embedding(input_dim=seq_length, output_dim=embed_dim)\n",
|
283 |
+
"\n",
|
284 |
+
" def call(self, x):\n",
|
285 |
+
" positions = tf.range(start=0, limit=self.seq_length, delta=1)\n",
|
286 |
+
" positions = self.pos_emb(positions)\n",
|
287 |
+
" x = self.emb(x)\n",
|
288 |
+
" return x + positions"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": null,
|
294 |
+
"id": "19e33d70-6984-44c2-bfe2-f525444bdf01",
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"ff_dim = 512\n",
|
299 |
+
"embed_dim = 256\n",
|
300 |
+
"\n",
|
301 |
+
" # This is a placeholder in functional api style\n",
|
302 |
+
" # batch_size is taken during .fit() phase\n",
|
303 |
+
"input_placeholder = tf.keras.Input(shape=(seq_length,))\n",
|
304 |
+
"input_placeholder.shape\n",
|
305 |
+
"tokenPosLayer = TokenAndPositionEmbedding(seq_length, total_words_in_dict, embed_dim)\n",
|
306 |
+
"x = tokenPosLayer(input_placeholder) # call isn't run yet, just a link created\n",
|
307 |
+
"\n",
|
308 |
+
"transformerBlock = TransformerBlock(seq_length, embed_dim, ff_dim)\n",
|
309 |
+
"print(x.shape)\n",
|
310 |
+
"\n",
|
311 |
+
"# x contains contextualized data, now the last row of the seq_len holds\n",
|
312 |
+
"# the latest context hence it is extract out\n",
|
313 |
+
"x = x[:, -1, :]\n",
|
314 |
+
"print(x.shape) # batch_size, last_row, embed_dim\n",
|
315 |
+
"\n",
|
316 |
+
"# we pass this context to a dense layer to learn how to make predictions\n",
|
317 |
+
"x = Dense(total_words_in_dict, activation='softmax')(x)\n",
|
318 |
+
"# batch_size, total_words (prediction)\n",
|
319 |
+
"# prediction happens batch wise in parallel and is compared to y\n",
|
320 |
+
"# batch wise in parallel\n",
|
321 |
+
"\n",
|
322 |
+
"print(x.shape)\n",
|
323 |
+
"\n",
|
324 |
+
"model = tf.keras.Model(inputs=input_placeholder, outputs=x)\n",
|
325 |
+
"model.summary()"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": null,
|
331 |
+
"id": "1f60878b-6e12-4dcd-ab89-03a64e7a3367",
|
332 |
+
"metadata": {},
|
333 |
+
"outputs": [],
|
334 |
+
"source": [
|
335 |
+
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
+
"id": "5e688417-13f5-41c7-b98e-c4b4330ef363",
|
342 |
+
"metadata": {},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"\n",
|
346 |
+
"import time\n",
|
347 |
+
"\n",
|
348 |
+
"\n",
|
349 |
+
"# CPU Benchmark\n",
|
350 |
+
"with tf.device('/CPU:0'):\n",
|
351 |
+
" start = time.time()\n",
|
352 |
+
" model.fit(X, y, batch_size=32, epochs=10)\n",
|
353 |
+
" print(\"CPU Time:\", time.time() - start)\n",
|
354 |
+
"\n",
|
355 |
+
"\n"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"cell_type": "code",
|
360 |
+
"execution_count": null,
|
361 |
+
"id": "7fb4552b-86cc-461c-8a9a-572f5bfd869b",
|
362 |
+
"metadata": {},
|
363 |
+
"outputs": [],
|
364 |
+
"source": [
|
365 |
+
"# # GPU Benchmark\n",
|
366 |
+
"# with tf.device('/GPU:0'):\n",
|
367 |
+
"# start = time.time()\n",
|
368 |
+
"# rnn.fit(X, y, batch_size=1024, epochs=10)\n",
|
369 |
+
"# print(\"GPU Time:\", time.time() - start)"
|
370 |
+
]
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"cell_type": "code",
|
374 |
+
"execution_count": null,
|
375 |
+
"id": "7659d823-faf4-4908-9a0c-bd18b076c240",
|
376 |
+
"metadata": {},
|
377 |
+
"outputs": [],
|
378 |
+
"source": [
|
379 |
+
"def predict_next_word(seed_text, num_words_to_predict, max_len):\n",
|
380 |
+
" for _ in range(num_words_to_predict):\n",
|
381 |
+
" seed_list = tokenizer.texts_to_sequences([seed_text])[0]\n",
|
382 |
+
" seed_list = pad_sequences([seed_list], maxlen=max_len - 1, padding='pre')\n",
|
383 |
+
" prediction = model.predict(seed_list, verbose=0)\n",
|
384 |
+
" # prediction is an embed_dim array of probabilities\n",
|
385 |
+
" max_pred_index = np.argmax(prediction)\n",
|
386 |
+
" seed_text+= \" \" + tokenizer.index_word[max_pred_index]\n",
|
387 |
+
"\n",
|
388 |
+
" return seed_text"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": null,
|
394 |
+
"id": "2dbbd786-5318-4172-9542-e56658ef79ba",
|
395 |
+
"metadata": {},
|
396 |
+
"outputs": [],
|
397 |
+
"source": [
|
398 |
+
"predict_next_word(\"who is harry is a \", 25, seq_length + 1)"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"cell_type": "code",
|
403 |
+
"execution_count": null,
|
404 |
+
"id": "6751aa4b-2d22-47a2-9f17-f557f78c6f45",
|
405 |
+
"metadata": {},
|
406 |
+
"outputs": [],
|
407 |
+
"source": [
|
408 |
+
"!pip install huggingface_hub"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": null,
|
414 |
+
"id": "99e980a6-8686-4dd8-b26c-25a5542451b5",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [],
|
417 |
+
"source": [
|
418 |
+
"model.save(\"harry_potter_transformer.keras\")"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": null,
|
424 |
+
"id": "d766fad6-e4be-4b97-9617-53a03661cb41",
|
425 |
+
"metadata": {
|
426 |
+
"scrolled": true
|
427 |
+
},
|
428 |
+
"outputs": [],
|
429 |
+
"source": [
|
430 |
+
"from huggingface_hub import notebook_login\n",
|
431 |
+
"\n",
|
432 |
+
"notebook_login()"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"id": "9171eefc-9952-42c6-8b00-9e7f9f6f6f58",
|
439 |
+
"metadata": {},
|
440 |
+
"outputs": [],
|
441 |
+
"source": [
|
442 |
+
"from huggingface_hub import HfApi\n",
|
443 |
+
"\n",
|
444 |
+
"repo_id = \"ramanhyd99/harry-potter-transformer\"\n",
|
445 |
+
"api = HfApi()\n",
|
446 |
+
"api.create_repo(repo_id=repo_id, exist_ok=True)\n"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": null,
|
452 |
+
"id": "bab81223-1667-463c-9075-9ab00958b22c",
|
453 |
+
"metadata": {},
|
454 |
+
"outputs": [],
|
455 |
+
"source": [
|
456 |
+
"# Push the model to HF中国镜像站 Hub\n",
|
457 |
+
"from huggingface_hub import upload_folder\n",
|
458 |
+
"\n",
|
459 |
+
"upload_folder(\n",
|
460 |
+
" folder_path=\"\",\n",
|
461 |
+
" path_in_repo=\".\",\n",
|
462 |
+
" repo_id=repo_id,\n",
|
463 |
+
" repo_type=\"model\"\n",
|
464 |
+
")"
|
465 |
+
]
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"metadata": {
|
469 |
+
"kernelspec": {
|
470 |
+
"display_name": "Python (tf-metal2)",
|
471 |
+
"language": "python",
|
472 |
+
"name": "tf-metal2"
|
473 |
+
},
|
474 |
+
"language_info": {
|
475 |
+
"codemirror_mode": {
|
476 |
+
"name": "ipython",
|
477 |
+
"version": 3
|
478 |
+
},
|
479 |
+
"file_extension": ".py",
|
480 |
+
"mimetype": "text/x-python",
|
481 |
+
"name": "python",
|
482 |
+
"nbconvert_exporter": "python",
|
483 |
+
"pygments_lexer": "ipython3",
|
484 |
+
"version": "3.9.21"
|
485 |
+
}
|
486 |
+
},
|
487 |
+
"nbformat": 4,
|
488 |
+
"nbformat_minor": 5
|
489 |
+
}
|