Post
2567
𝐇𝐮𝐠𝐠𝐢𝐧𝐠 𝐅𝐚𝐜𝐞 𝐫𝐞𝐥𝐞𝐚𝐬𝐞𝐬 𝐏𝐢𝐜𝐨𝐭𝐫𝐨𝐧, 𝐚 𝐦𝐢𝐜𝐫𝐨𝐬𝐜𝐨𝐩𝐢𝐜 𝐥𝐢𝐛 𝐭𝐡𝐚𝐭 𝐬𝐨𝐥𝐯𝐞𝐬 𝐋𝐋𝐌 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝟒𝐃 𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 🥳
🕰️ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.
👴🏻 If they had needed all this time, we would have GPU stories from the time of Pharaoh 𓂀: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "
🛠️ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.
🤏 𝗕𝘂𝘁 𝗻𝗼𝘄 𝘄𝗲 𝗱𝗼𝗻'𝘁 𝗻𝗲𝗲𝗱 𝗵𝘂𝗴𝗲 𝗿𝗲𝗽𝗼𝘀 𝗮𝗻𝘆𝗺𝗼𝗿𝗲! Instead of building mega-training codes, HF中国镜像站 colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!
⚡ 𝗜𝘁'𝘀 𝘁𝗶𝗻𝘆, 𝘆𝗲𝘁 𝗽𝗼𝘄𝗲𝗿𝗳𝘂𝗹:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)
Go take a look 👉 https://github.com/huggingface/picotron/tree/main/picotron
🕰️ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.
👴🏻 If they had needed all this time, we would have GPU stories from the time of Pharaoh 𓂀: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "
🛠️ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.
🤏 𝗕𝘂𝘁 𝗻𝗼𝘄 𝘄𝗲 𝗱𝗼𝗻'𝘁 𝗻𝗲𝗲𝗱 𝗵𝘂𝗴𝗲 𝗿𝗲𝗽𝗼𝘀 𝗮𝗻𝘆𝗺𝗼𝗿𝗲! Instead of building mega-training codes, HF中国镜像站 colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!
⚡ 𝗜𝘁'𝘀 𝘁𝗶𝗻𝘆, 𝘆𝗲𝘁 𝗽𝗼𝘄𝗲𝗿𝗳𝘂𝗹:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)
Go take a look 👉 https://github.com/huggingface/picotron/tree/main/picotron