mgubri commited on
Commit
ed2f484
·
verified ·
1 Parent(s): 33de47a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -3
README.md CHANGED
@@ -3,9 +3,13 @@ license: mit
3
  base_model: microsoft/deberta-v3-base
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: apricot_binary_coqa_deberta-v3-base_for_vicuna-7b-v1.5
8
  results: []
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,11 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # apricot_binary_coqa_deberta-v3-base_for_vicuna-7b-v1.5
15
 
16
- This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the stanfordnlp/coqa dataset.
 
17
 
18
  ## Model description
19
 
20
- More information needed
 
21
 
22
  ## Intended uses & limitations
23
 
@@ -31,6 +37,8 @@ More information needed
31
 
32
  ### Training hyperparameters
33
 
 
 
34
  The following hyperparameters were used during training:
35
  - learning_rate: 5e-05
36
  - train_batch_size: 8
@@ -45,4 +53,4 @@ The following hyperparameters were used during training:
45
  - Transformers 4.32.0
46
  - Pytorch 2.0.0+cu117
47
  - Datasets 2.14.6
48
- - Tokenizers 0.13.3
 
3
  base_model: microsoft/deberta-v3-base
4
  tags:
5
  - generated_from_trainer
6
+ - calibration
7
+ - uncertainty
8
  model-index:
9
  - name: apricot_binary_coqa_deberta-v3-base_for_vicuna-7b-v1.5
10
  results: []
11
+ datasets:
12
+ - stanfordnlp/coqa
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # apricot_binary_coqa_deberta-v3-base_for_vicuna-7b-v1.5
19
 
20
+
21
+ This model is fine-tuned for black-box LLM calibration as part of the 🍑 Apricot paper ["Calibrating Large Language Models Using Their Generations Only"](https://github.com/parameterlab/apricot) (ACL 2024).
22
 
23
  ## Model description
24
 
25
+
26
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) to predict the calibration score for the [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) model on the questions from the stanfordnlp/coqa dataset. It uses the binary type of calibration target score.
27
 
28
  ## Intended uses & limitations
29
 
 
37
 
38
  ### Training hyperparameters
39
 
40
+ **TODO**: update the values below
41
+
42
  The following hyperparameters were used during training:
43
  - learning_rate: 5e-05
44
  - train_batch_size: 8
 
53
  - Transformers 4.32.0
54
  - Pytorch 2.0.0+cu117
55
  - Datasets 2.14.6
56
+ - Tokenizers 0.13.3