Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Law of Robustness beyond Isoperimetry
We study the robust interpolation problem of arbitrary data distributions supported on a bounded space and propose a two-fold law of robustness. Robust interpolation refers to the problem of interpolating n noisy training data points in R^d by a Lipschitz function. Although this problem has been well understood when the samples are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. We prove a Lipschitzness lower bound Omega(n/p) of the interpolating neural network with p parameters on arbitrary data distributions. With this result, we validate the law of robustness conjecture in prior work by Bubeck, Li, and Nagaraj on two-layer neural networks with polynomial weights. We then extend our result to arbitrary interpolating approximators and prove a Lipschitzness lower bound Omega(n^{1/d}) for robust interpolation. Our results demonstrate a two-fold law of robustness: i) we show the potential benefit of overparametrization for smooth data interpolation when n=poly(d), and ii) we disprove the potential existence of an O(1)-Lipschitz robust interpolating function when n=exp(omega(d)).
Second-order regression models exhibit progressive sharpening to the edge of stability
Recent studies of gradient descent with large step sizes have shown that there is often a regime with an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of stability). These phenomena are intrinsically non-linear and do not happen for models in the constant Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in the parameters. As such, we consider the next simplest class of predictive models, namely those that are quadratic in the parameters, which we call second-order regression models. For quadratic objectives in two dimensions, we prove that this second-order regression model exhibits progressive sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability, which we explicitly compute. In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network, suggesting that progressive sharpening and edge-of-stability behavior aren't unique features of neural networks, and could be a more general property of discrete learning algorithms in high-dimensional non-linear models.
AutoKnots: Adaptive Knot Allocation for Spline Interpolation
In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data
The neural operator has emerged as a powerful tool in learning mappings between function spaces in PDEs. However, when faced with real-world physical data, which are often highly non-uniformly distributed, it is challenging to use mesh-based techniques such as the FFT. To address this, we introduce the Non-Uniform Neural Operator (NUNO), a comprehensive framework designed for efficient operator learning with non-uniform data. Leveraging a K-D tree-based domain decomposition, we transform non-uniform data into uniform grids while effectively controlling interpolation error, thereby paralleling the speed and accuracy of learning from non-uniform data. We conduct extensive experiments on 2D elasticity, (2+1)D channel flow, and a 3D multi-physics heatsink, which, to our knowledge, marks a novel exploration into 3D PDE problems with complex geometries. Our framework has reduced error rates by up to 60% and enhanced training speeds by 2x to 30x. The code is now available at https://github.com/thu-ml/NUNO.
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting
Recent progress in neural forecasting accelerated improvements in the performance of large-scale forecasting systems. Yet, long-horizon forecasting remains a very difficult task. Two common challenges afflicting the task are the volatility of the predictions and their computational complexity. We introduce N-HiTS, a model which addresses both challenges by incorporating novel hierarchical interpolation and multi-rate data sampling techniques. These techniques enable the proposed method to assemble its predictions sequentially, emphasizing components with different frequencies and scales while decomposing the input signal and synthesizing the forecast. We prove that the hierarchical interpolation technique can efficiently approximate arbitrarily long horizons in the presence of smoothness. Additionally, we conduct extensive large-scale dataset experiments from the long-horizon forecasting literature, demonstrating the advantages of our method over the state-of-the-art methods, where N-HiTS provides an average accuracy improvement of almost 20% over the latest Transformer architectures while reducing the computation time by an order of magnitude (50 times). Our code is available at bit.ly/3VA5DoT
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Numerical simulations in climate, chemistry, or astrophysics are computationally too expensive for uncertainty quantification or parameter-exploration at high-resolution. Reduced-order or surrogate models are multiple orders of magnitude faster, but traditional surrogates are inflexible or inaccurate and pure machine learning (ML)-based surrogates too data-hungry. We propose a hybrid, flexible surrogate model that exploits known physics for simulating large-scale dynamics and limits learning to the hard-to-model term, which is called parametrization or closure and captures the effect of fine- onto large-scale dynamics. Leveraging neural operators, we are the first to learn grid-independent, non-local, and flexible parametrizations. Our multiscale neural operator is motivated by a rich literature in multiscale modeling, has quasilinear runtime complexity, is more accurate or flexible than state-of-the-art parametrizations and demonstrated on the chaotic equation multiscale Lorenz96.
The Optimality of Kernel Classifiers in Sobolev Space
Kernel methods are widely used in machine learning, especially for classification problems. However, the theoretical analysis of kernel classification is still limited. This paper investigates the statistical performances of kernel classifiers. With some mild assumptions on the conditional probability eta(x)=P(Y=1mid X=x), we derive an upper bound on the classification excess risk of a kernel classifier using recent advances in the theory of kernel regression. We also obtain a minimax lower bound for Sobolev spaces, which shows the optimality of the proposed classifier. Our theoretical results can be extended to the generalization error of overparameterized neural network classifiers. To make our theoretical results more applicable in realistic settings, we also propose a simple method to estimate the interpolation smoothness of 2eta(x)-1 and apply the method to real datasets.
Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants
We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.
Kolmogorov--Arnold networks in molecular dynamics
We explore the integration of Kolmogorov Networks (KANs) into molecular dynamics (MD) simulations to improve interatomic potentials. We propose that widely used potentials, such as the Lennard-Jones (LJ) potential, the embedded atom model (EAM), and artificial neural network (ANN) potentials, can be interpreted within the KAN framework. Specifically, we demonstrate that the descriptors for ANN potentials, typically constructed using polynomials, can be redefined using KAN's non-linear functions. By employing linear or cubic spline interpolations for these KAN functions, we show that the computational cost of evaluating ANN potentials and their derivatives is reduced.
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
In this paper, we construct a mixture of neural operators (MoNOs) between function spaces whose complexity is distributed over a network of expert neural operators (NOs), with each NO satisfying parameter scaling restrictions. Our main result is a distributed universal approximation theorem guaranteeing that any Lipschitz non-linear operator between L^2([0,1]^d) spaces can be approximated uniformly over the Sobolev unit ball therein, to any given varepsilon>0 accuracy, by an MoNO while satisfying the constraint that: each expert NO has a depth, width, and rank of O(varepsilon^{-1}). Naturally, our result implies that the required number of experts must be large, however, each NO is guaranteed to be small enough to be loadable into the active memory of most computers for reasonable accuracies varepsilon. During our analysis, we also obtain new quantitative expression rates for classical NOs approximating uniformly continuous non-linear operators uniformly on compact subsets of L^2([0,1]^d).
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
The analysis of parametric and non-parametric uncertainties of very large dynamical systems requires the construction of a stochastic model of said system. Linear approaches relying on random matrix theory and principal componant analysis can be used when systems undergo low-frequency vibrations. In the case of fast dynamics and wave propagation, we investigate a random generator of boundary conditions for fast submodels by using machine learning. We show that the use of non-linear techniques in machine learning and data-driven methods is highly relevant. Physics-informed neural networks is a possible choice for a data-driven method to replace linear modal analysis. An architecture that support a random component is necessary for the construction of the stochastic model of the physical system for non-parametric uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in the data. Generative Adversarial Networks (GANs) are suited for such applications, where the Wasserstein-GAN with gradient penalty variant offers improved convergence results for our problem. The objective of our approach is to train a GAN on data from a finite element method code (Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on a submodel. The submodel and the training data have both the same geometrical support. It is a zone of interest for uncertainty quantification and relevant to engineering purposes. In the exploitation phase, the framework can be viewed as a randomized and parametrized simulation generator on the submodel, which can be used as a Monte Carlo estimator.
Uncertainty Quantification via Stable Distribution Propagation
We propose a new approach for propagating stable probability distributions through neural networks. Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity. This allows propagating Gaussian and Cauchy input uncertainties through neural networks to quantify their output uncertainties. To demonstrate the utility of propagating distributions, we apply the proposed method to predicting calibrated confidence intervals and selective prediction on out-of-distribution data. The results demonstrate a broad applicability of propagating distributions and show the advantages of our method over other approaches such as moment matching.
Neural Implicit Surface Evolution
This work investigates the use of smooth neural networks for modeling dynamic variations of implicit surfaces under the level set equation (LSE). For this, it extends the representation of neural implicit surfaces to the space-time R^3times R, which opens up mechanisms for continuous geometric transformations. Examples include evolving an initial surface towards general vector fields, smoothing and sharpening using the mean curvature equation, and interpolations of initial conditions. The network training considers two constraints. A data term is responsible for fitting the initial condition to the corresponding time instant, usually R^3 times {0}. Then, a LSE term forces the network to approximate the underlying geometric evolution given by the LSE, without any supervision. The network can also be initialized based on previously trained initial conditions, resulting in faster convergence compared to the standard approach.
Learning Collective Variables for Protein Folding with Labeled Data Augmentation through Geodesic Interpolation
In molecular dynamics (MD) simulations, rare events, such as protein folding, are typically studied by means of enhanced sampling techniques, most of which rely on the definition of a collective variable (CV) along which the acceleration occurs. Obtaining an expressive CV is crucial, but often hindered by the lack of information about the particular event, e.g., the transition from unfolded to folded conformation. We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesic interpolations resembling protein folding transitions, thereby improving sampling efficiency without true transition state samples. Leveraging interpolation progress parameters, we introduce a regression-based learning scheme for CV models, which outperforms classifier-based methods when transition state data is limited and noisy
Efficient Encoding of Graphics Primitives with Simplex-based Structures
Grid-based structures are commonly used to encode explicit features for graphics primitives such as images, signed distance functions (SDF), and neural radiance fields (NeRF) due to their simple implementation. However, in n-dimensional space, calculating the value of a sampled point requires interpolating the values of its 2^n neighboring vertices. The exponential scaling with dimension leads to significant computational overheads. To address this issue, we propose a simplex-based approach for encoding graphics primitives. The number of vertices in a simplex-based structure increases linearly with dimension, making it a more efficient and generalizable alternative to grid-based representations. Using the non-axis-aligned simplicial structure property, we derive and prove a coordinate transformation, simplicial subdivision, and barycentric interpolation scheme for efficient sampling, which resembles transformation procedures in the simplex noise algorithm. Finally, we use hash tables to store multiresolution features of all interest points in the simplicial grid, which are passed into a tiny fully connected neural network to parameterize graphics primitives. We implemented a detailed simplex-based structure encoding algorithm in C++ and CUDA using the methods outlined in our approach. In the 2D image fitting task, the proposed method is capable of fitting a giga-pixel image with 9.4% less time compared to the baseline method proposed by instant-ngp, while maintaining the same quality and compression rate. In the volumetric rendering setup, we observe a maximum 41.2% speedup when the samples are dense enough.
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
Variants of the Empirical Interpolation Method: symmetric formulation, choice of norms and rectangular extension
The Empirical Interpolation Method (EIM) is a greedy procedure that constructs approximate representations of two-variable functions in separated form. In its classical presentation, the two variables play a non-symmetric role. In this work, we give an equivalent definition of the EIM approximation, in which the two variables play symmetric roles. Then, we give a proof for the existence of this approximation, and extend it up to the convergence of the EIM, and for any norm chosen to compute the error in the greedy step. Finally, we introduce a way to compute a separated representation in the case where the number of selected values is different for each variable. In the case of a physical field measured by sensors, this is useful to discard a broken sensor while keeping the information provided by the associated selected field.
Neural Networks Fail to Learn Periodic Functions and How to Fix It
Previous literature offers limited clues on how to learn a periodic function using modern neural networks. We start with a study of the extrapolation properties of neural networks; we prove and demonstrate experimentally that the standard activations functions, such as ReLU, tanh, sigmoid, along with their variants, all fail to learn to extrapolate simple periodic functions. We hypothesize that this is due to their lack of a "periodic" inductive bias. As a fix of this problem, we propose a new activation, namely, x + sin^2(x), which achieves the desired periodic inductive bias to learn a periodic function while maintaining a favorable optimization property of the ReLU-based activations. Experimentally, we apply the proposed method to temperature and financial data prediction.
Solvation Free Energies from Neural Thermodynamic Integration
We present a method for computing free-energy differences using thermodynamic integration with a neural network potential that interpolates between two target Hamiltonians. The interpolation is defined at the sample distribution level, and the neural network potential is optimized to match the corresponding equilibrium potential at every intermediate time-step. Once the interpolating potentials and samples are well-aligned, the free-energy difference can be estimated using (neural) thermodynamic integration. To target molecular systems, we simultaneously couple Lennard-Jones and electrostatic interactions and model the rigid-body rotation of molecules. We report accurate results for several benchmark systems: a Lennard-Jones particle in a Lennard-Jones fluid, as well as the insertion of both water and methane solutes in a water solvent at atomistic resolution using a simple three-body neural-network potential.
Temporal Interpolation Is All You Need for Dynamic Neural Radiance Fields
Temporal interpolation often plays a crucial role to learn meaningful representations in dynamic scenes. In this paper, we propose a novel method to train spatiotemporal neural radiance fields of dynamic scenes based on temporal interpolation of feature vectors. Two feature interpolation methods are suggested depending on underlying representations, neural networks or grids. In the neural representation, we extract features from space-time inputs via multiple neural network modules and interpolate them based on time frames. The proposed multi-level feature interpolation network effectively captures features of both short-term and long-term time ranges. In the grid representation, space-time features are learned via four-dimensional hash grids, which remarkably reduces training time. The grid representation shows more than 100 times faster training speed than the previous neural-net-based methods while maintaining the rendering quality. Concatenating static and dynamic features and adding a simple smoothness term further improve the performance of our proposed models. Despite the simplicity of the model architectures, our method achieved state-of-the-art performance both in rendering quality for the neural representation and in training speed for the grid representation.
Optimizing Millions of Hyperparameters by Implicit Differentiation
We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results about the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyper-parameters. For example, we learn a data-augmentation network - where every weight is a hyperparameter tuned for validation performance - outputting augmented training examples. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.
RegMix: Data Mixing Augmentation for Regression
Data augmentation is becoming essential for improving regression performance in critical applications including manufacturing, climate prediction, and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification have succeeded in improving the model performance, which is reasonable due to the characteristics of the classification task, but has limitations in regression. We show that mixing examples that have large data distances using linear interpolations may have increasingly-negative effects on model performance. Our key idea is thus to limit the distances between examples that are mixed. We propose RegMix, a data augmentation framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a validation set. Our experiments conducted both on synthetic and real datasets show that RegMix outperforms state-of-the-art data augmentation baselines applicable to regression.
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
Parameterization-driven Neural Surface Reconstruction for Object-oriented Editing in Neural Rendering
The advancements in neural rendering have increased the need for techniques that enable intuitive editing of 3D objects represented as neural implicit surfaces. This paper introduces a novel neural algorithm for parameterizing neural implicit surfaces to simple parametric domains like spheres and polycubes. Our method allows users to specify the number of cubes in the parametric domain, learning a configuration that closely resembles the target 3D object's geometry. It computes bi-directional deformation between the object and the domain using a forward mapping from the object's zero level set and an inverse deformation for backward mapping. We ensure nearly bijective mapping with a cycle loss and optimize deformation smoothness. The parameterization quality, assessed by angle and area distortions, is guaranteed using a Laplacian regularizer and an optimized learned parametric domain. Our framework integrates with existing neural rendering pipelines, using multi-view images of a single object or multiple objects of similar geometries to reconstruct 3D geometry and compute texture maps automatically, eliminating the need for any prior information. We demonstrate the method's effectiveness on images of human heads and man-made objects.
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
Neural Operator: Learning Maps Between Function Spaces
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
Planar Substitutions to Lebesgue type Space-Filling Curves and Relatively Dense Fractal-like Sets in the Plane
Lebesgue curve is a space-filling curve that fills the unit square through linear interpolation. In this study, we generalise Lebesgue's construction to generate space-filling curves from any given planar substitution satisfying a mild condition. The generated space-filling curves for some known substitutions are elucidated. Some of those substitutions further induce relatively dense fractal-like sets in the plane, whenever some additional assumptions are met.
Escaping saddle points in zeroth-order optimization: the power of two-point estimators
Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing Omega(d) function valuations per iteration (with d denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on 2m (for any 1 leq m leq d) function evaluations per iteration can not only find epsilon-second order stationary points polynomially fast, but do so using only Oleft(d{mepsilon^{2}psi}right) function evaluations, where psi geq Omegaleft(epsilonright) is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.
Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis
We present a Non-parametric Network for 3D point cloud analysis, Point-NN, which consists of purely non-learnable components: farthest point sampling (FPS), k-nearest neighbors (k-NN), and pooling operations, with trigonometric functions. Surprisingly, it performs well on various 3D tasks, requiring no parameters or training, and even surpasses existing fully trained models. Starting from this basic non-parametric model, we propose two extensions. First, Point-NN can serve as a base architectural framework to construct Parametric Networks by simply inserting linear layers on top. Given the superior non-parametric foundation, the derived Point-PN exhibits a high performance-efficiency trade-off with only a few learnable parameters. Second, Point-NN can be regarded as a plug-and-play module for the already trained 3D models during inference. Point-NN captures the complementary geometric knowledge and enhances existing methods for different 3D benchmarks without re-training. We hope our work may cast a light on the community for understanding 3D point clouds with non-parametric methods. Code is available at https://github.com/ZrrSkywalker/Point-NN.
Are Gaussian data all you need? Extents and limits of universality in high-dimensional generalized linear estimation
In this manuscript we consider the problem of generalized linear estimation on Gaussian mixture data with labels given by a single-index model. Our first result is a sharp asymptotic expression for the test and training errors in the high-dimensional regime. Motivated by the recent stream of results on the Gaussian universality of the test and training errors in generalized linear estimation, we ask ourselves the question: "when is a single Gaussian enough to characterize the error?". Our formula allow us to give sharp answers to this question, both in the positive and negative directions. More precisely, we show that the sufficient conditions for Gaussian universality (or lack of thereof) crucially depend on the alignment between the target weights and the means and covariances of the mixture clusters, which we precisely quantify. In the particular case of least-squares interpolation, we prove a strong universality property of the training error, and show it follows a simple, closed-form expression. Finally, we apply our results to real datasets, clarifying some recent discussion in the literature about Gaussian universality of the errors in this context.
PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies.
PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers
Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.
Polyhedral Complex Derivation from Piecewise Trilinear Networks
Recent advancements in visualizing deep neural networks provide insights into their structures and mesh extraction from Continuous Piecewise Affine (CPWA) functions. Meanwhile, developments in neural surface representation learning incorporate non-linear positional encoding, addressing issues like spectral bias; however, this poses challenges in applying mesh extraction techniques based on CPWA functions. Focusing on trilinear interpolating methods as positional encoding, we present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes within the trilinear region under the eikonal constraint. Moreover, we introduce a method for approximating intersecting points among three hypersurfaces contributing to broader applications. We empirically validate correctness and parsimony through chamfer distance and efficiency, and angular distance, while examining the correlation between the eikonal loss and the planarity of the hypersurfaces.
NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions
We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
An elasticity-based mesh morphing technique with application to reduced-order modeling
The aim of this article is to introduce a new methodology for constructing morphings between shapes that have identical topology. This morphing is obtained by deforming a reference shape, through the resolution of a sequence of linear elasticity equations, onto the target shape. In particular, our approach does not assume any knowledge of a boundary parametrization. Furthermore, we demonstrate how constraints can be imposed on specific points, lines and surfaces in the reference domain to ensure alignment with their counterparts in the target domain after morphing. Additionally, we show how the proposed methodology can be integrated in an offline and online paradigm, which is useful in reduced-order modeling scenarii involving variable shapes. This framework facilitates the efficient computation of the morphings in various geometric configurations, thus improving the versatility and applicability of the approach. The methodology is illustrated on the regression problem of the drag and lift coefficients of airfoils of non-parameterized variable shapes.
Fréchet Cumulative Covariance Net for Deep Nonlinear Sufficient Dimension Reduction with Random Objects
Nonlinear sufficient dimension reductionlibing_generalSDR, which constructs nonlinear low-dimensional representations to summarize essential features of high-dimensional data, is an important branch of representation learning. However, most existing methods are not applicable when the response variables are complex non-Euclidean random objects, which are frequently encountered in many recent statistical applications. In this paper, we introduce a new statistical dependence measure termed Fr\'echet Cumulative Covariance (FCCov) and develop a novel nonlinear SDR framework based on FCCov. Our approach is not only applicable to complex non-Euclidean data, but also exhibits robustness against outliers. We further incorporate Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to estimate nonlinear sufficient directions in the sample level. Theoretically, we prove that our method with squared Frobenius norm regularization achieves unbiasedness at the sigma-field level. Furthermore, we establish non-asymptotic convergence rates for our estimators based on FNNs and ResNet-type CNNs, which match the minimax rate of nonparametric regression up to logarithmic factors. Intensive simulation studies verify the performance of our methods in both Euclidean and non-Euclidean settings. We apply our method to facial expression recognition datasets and the results underscore more realistic and broader applicability of our proposal.
Interpolation for Robust Learning: Data Augmentation on Geodesics
We propose to study and promote the robustness of a model as per its performance through the interpolation of training data distributions. Specifically, (1) we augment the data by finding the worst-case Wasserstein barycenter on the geodesic connecting subpopulation distributions of different categories. (2) We regularize the model for smoother performance on the continuous geodesic path connecting subpopulation distributions. (3) Additionally, we provide a theoretical guarantee of robustness improvement and investigate how the geodesic location and the sample size contribute, respectively. Experimental validations of the proposed strategy on four datasets, including CIFAR-100 and ImageNet, establish the efficacy of our method, e.g., our method improves the baselines' certifiable robustness on CIFAR10 up to 7.7%, with 16.8% on empirical robustness on CIFAR-100. Our work provides a new perspective of model robustness through the lens of Wasserstein geodesic-based interpolation with a practical off-the-shelf strategy that can be combined with existing robust training methods.
Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model
We derive a minimalist but powerful deterministic denoising-diffusion model. While denoising diffusion has shown great success in many domains, its underlying theory remains largely inaccessible to non-expert users. Indeed, an understanding of graduate-level concepts such as Langevin dynamics or score matching appears to be required to grasp how it works. We propose an alternative approach that requires no more than undergrad calculus and probability. We consider two densities and observe what happens when random samples from these densities are blended (linearly interpolated). We show that iteratively blending and deblending samples produces random paths between the two densities that converge toward a deterministic mapping. This mapping can be evaluated with a neural network trained to deblend samples. We obtain a model that behaves like deterministic denoising diffusion: it iteratively maps samples from one density (e.g., Gaussian noise) to another (e.g., cat images). However, compared to the state-of-the-art alternative, our model is simpler to derive, simpler to implement, more numerically stable, achieves higher quality results in our experiments, and has interesting connections to computer graphics.
Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering. Nonetheless, cutting-edge dynamic neural rendering methods rely heavily on these implicit representations, which frequently struggle to capture the intricate details of objects in the scene. Furthermore, implicit methods have difficulty achieving real-time rendering in general dynamic scenes, limiting their use in a variety of tasks. To address the issues, we propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space with a deformation field to model monocular dynamic scenes. We also introduce an annealing smoothing training mechanism with no extra overhead, which can mitigate the impact of inaccurate poses on the smoothness of time interpolation tasks in real-world datasets. Through a differential Gaussian rasterizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed. Experiments show that our method outperforms existing methods significantly in terms of both rendering quality and speed, making it well-suited for tasks such as novel-view synthesis, time interpolation, and real-time rendering.
Efficient Parametric Approximations of Neural Network Function Space Distance
It is often useful to compactly summarize important properties of model parameters and training data so that they can be used later without storing and/or iterating over the entire dataset. As a specific case, we consider estimating the Function Space Distance (FSD) over a training set, i.e. the average discrepancy between the outputs of two neural networks. We propose a Linearized Activation Function TRick (LAFTR) and derive an efficient approximation to FSD for ReLU neural networks. The key idea is to approximate the architecture as a linear network with stochastic gating. Despite requiring only one parameter per unit of the network, our approach outcompetes other parametric approximations with larger memory requirements. Applied to continual learning, our parametric approximation is competitive with state-of-the-art nonparametric approximations, which require storing many training examples. Furthermore, we show its efficacy in estimating influence functions accurately and detecting mislabeled examples without expensive iterations over the entire dataset.
Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling
Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.
ToonCrafter: Generative Cartoon Interpolation
We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors.
Coordinate Quantized Neural Implicit Representations for Multi-view Reconstruction
In recent years, huge progress has been made on learning neural implicit representations from multi-view images for 3D reconstruction. As an additional input complementing coordinates, using sinusoidal functions as positional encodings plays a key role in revealing high frequency details with coordinate-based neural networks. However, high frequency positional encodings make the optimization unstable, which results in noisy reconstructions and artifacts in empty space. To resolve this issue in a general sense, we introduce to learn neural implicit representations with quantized coordinates, which reduces the uncertainty and ambiguity in the field during optimization. Instead of continuous coordinates, we discretize continuous coordinates into discrete coordinates using nearest interpolation among quantized coordinates which are obtained by discretizing the field in an extremely high resolution. We use discrete coordinates and their positional encodings to learn implicit functions through volume rendering. This significantly reduces the variations in the sample space, and triggers more multi-view consistency constraints on intersections of rays from different views, which enables to infer implicit function in a more effective way. Our quantized coordinates do not bring any computational burden, and can seamlessly work upon the latest methods. Our evaluations under the widely used benchmarks show our superiority over the state-of-the-art. Our code is available at https://github.com/MachinePerceptionLab/CQ-NIR.
A neural network for forward and inverse nonlinear Fourier transforms for fiber optic communication
We propose a neural network for both forward and inverse continuous nonlinear Fourier transforms, NFT and INFT respectively. We demonstrate the network's capability to perform NFT and INFT for a random mix of NFDM-QAM signals. The network transformations (NFT and INFT) exhibit true characteristics of these transformations; they are significantly different for low and high-power input pulses. The network shows adequate accuracy with an RMSE of 5e-3 for forward and 3e-2 for inverse transforms. We further show that the trained network can be used to perform general nonlinear Fourier transforms on arbitrary pulses beyond the training pulse types.
Inverse Approximation Theory for Nonlinear Recurrent Neural Networks
We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in https://github.com/radarFudan/Curse-of-memory
A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health. Such data represent fundamental challenges to many classical models from machine learning and statistics due to the presence of non-uniform intervals between observations. However, there has been significant progress within the machine learning community over the last decade on developing specialized models and architectures for learning from irregularly sampled univariate and multivariate time series data. In this survey, we first describe several axes along which approaches to learning from irregularly sampled time series differ including what data representations they are based on, what modeling primitives they leverage to deal with the fundamental problem of irregular sampling, and what inference tasks they are designed to perform. We then survey the recent literature organized primarily along the axis of modeling primitives. We describe approaches based on temporal discretization, interpolation, recurrence, attention and structural invariance. We discuss similarities and differences between approaches and highlight primary strengths and weaknesses.
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as nonlinear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) = int_Omega L(x, u(x), nabla u(x)) - f(x) u(x)dx. We show that if composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most B_L b^p, the solution to the PDE can be epsilon-approximated in the L^2 sense by a function with Barron norm Oleft(left(dB_Lright)^{max{p log(1/ epsilon), p^{log(1/epsilon)}}}right). By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating p, epsilon, B_L as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.
A technical note on bilinear layers for interpretability
The ability of neural networks to represent more features than neurons makes interpreting them challenging. This phenomenon, known as superposition, has spurred efforts to find architectures that are more interpretable than standard multilayer perceptrons (MLPs) with elementwise activation functions. In this note, I examine bilinear layers, which are a type of MLP layer that are mathematically much easier to analyze while simultaneously performing better than standard MLPs. Although they are nonlinear functions of their input, I demonstrate that bilinear layers can be expressed using only linear operations and third order tensors. We can integrate this expression for bilinear layers into a mathematical framework for transformer circuits, which was previously limited to attention-only transformers. These results suggest that bilinear layers are easier to analyze mathematically than current architectures and thus may lend themselves to deeper safety insights by allowing us to talk more formally about circuits in neural networks. Additionally, bilinear layers may offer an alternative path for mechanistic interpretability through understanding the mechanisms of feature construction instead of enumerating a (potentially exponentially) large number of features in large models.
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
We bound the excess risk of interpolating deep linear networks trained using gradient flow. In a setting previously used to establish risk bounds for the minimum ell_2-norm interpolant, we show that randomly initialized deep linear networks can closely approximate or even match known bounds for the minimum ell_2-norm interpolant. Our analysis also reveals that interpolating deep linear models have exactly the same conditional variance as the minimum ell_2-norm solution. Since the noise affects the excess risk only through the conditional variance, this implies that depth does not improve the algorithm's ability to "hide the noise". Our simulations verify that aspects of our bounds reflect typical behavior for simple data distributions. We also find that similar phenomena are seen in simulations with ReLU networks, although the situation there is more nuanced.
L4GM: Large 4D Gaussian Reconstruction Model
We present L4GM, the first 4D Large Reconstruction Model that produces animated objects from a single-view video input -- in a single feed-forward pass that takes only a second. Key to our success is a novel dataset of multiview videos containing curated, rendered animated objects from Objaverse. This dataset depicts 44K diverse objects with 110K animations rendered in 48 viewpoints, resulting in 12M videos with a total of 300M frames. We keep our L4GM simple for scalability and build directly on top of LGM, a pretrained 3D Large Reconstruction Model that outputs 3D Gaussian ellipsoids from multiview image input. L4GM outputs a per-frame 3D Gaussian Splatting representation from video frames sampled at a low fps and then upsamples the representation to a higher fps to achieve temporal smoothness. We add temporal self-attention layers to the base LGM to help it learn consistency across time, and utilize a per-timestep multiview rendering loss to train the model. The representation is upsampled to a higher framerate by training an interpolation model which produces intermediate 3D Gaussian representations. We showcase that L4GM that is only trained on synthetic data generalizes extremely well on in-the-wild videos, producing high quality animated 3D assets.
OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields
Reconstructing 3D shapes from planar cross-sections is a challenge inspired by downstream applications like medical imaging and geographic informatics. The input is an in/out indicator function fully defined on a sparse collection of planes in space, and the output is an interpolation of the indicator function to the entire volume. Previous works addressing this sparse and ill-posed problem either produce low quality results, or rely on additional priors such as target topology, appearance information, or input normal directions. In this paper, we present OReX, a method for 3D shape reconstruction from slices alone, featuring a Neural Field as the interpolation prior. A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities. The main challenge for this approach is high-frequency details, as the neural prior is overly smoothing. To alleviate this, we offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages. In addition, we identify and analyze a ripple-like effect stemming from the mesh extraction step. We mitigate it by regularizing the spatial gradients of the indicator function around input in/out boundaries during network training, tackling the problem at the root. Through extensive qualitative and quantitative experimentation, we demonstrate our method is robust, accurate, and scales well with the size of the input. We report state-of-the-art results compared to previous approaches and recent potential solutions, and demonstrate the benefit of our individual contributions through analysis and ablation studies.
A Neural PDE Solver with Temporal Stencil Modeling
Numerical simulation of non-linear partial differential equations plays a crucial role in modeling physical science and engineering phenomena, such as weather, climate, and aerodynamics. Recent Machine Learning (ML) models trained on low-resolution spatio-temporal signals have shown new promises in capturing important dynamics in high-resolution signals, under the condition that the models can effectively recover the missing details. However, this study shows that significant information is often lost in the low-resolution down-sampled features. To address such issues, we propose a new approach, namely Temporal Stencil Modeling (TSM), which combines the strengths of advanced time-series sequence modeling (with the HiPPO features) and state-of-the-art neural PDE solvers (with learnable stencil modeling). TSM aims to recover the lost information from the PDE trajectories and can be regarded as a temporal generalization of classic finite volume methods such as WENO. Our experimental results show that TSM achieves the new state-of-the-art simulation accuracy for 2-D incompressible Navier-Stokes turbulent flows: it significantly outperforms the previously reported best results by 19.9% in terms of the highly-correlated duration time and reduces the inference latency into 80%. We also show a strong generalization ability of the proposed method to various out-of-distribution turbulent flow settings. Our code is available at "https://github.com/Edward-Sun/TSM-PDE".
Liquid Time-constant Networks
We introduce a new class of time-continuous recurrent neural network models. Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems modulated via nonlinear interlinked gates. The resulting models represent dynamical systems with varying (i.e., liquid) time-constants coupled to their hidden state, with outputs being computed by numerical differential equation solvers. These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations, and give rise to improved performance on time-series prediction tasks. To demonstrate these properties, we first take a theoretical approach to find bounds over their dynamics and compute their expressive power by the trajectory length measure in latent trajectory space. We then conduct a series of time-series prediction experiments to manifest the approximation capability of Liquid Time-Constant Networks (LTCs) compared to classical and modern RNNs. Code and data are available at https://github.com/raminmh/liquid_time_constant_networks
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
Irregular sampling intervals and missing values in real-world time series data present challenges for conventional methods that assume consistent intervals and complete data. Neural Ordinary Differential Equations (Neural ODEs) offer an alternative approach, utilizing neural networks combined with ODE solvers to learn continuous latent representations through parameterized vector fields. Neural Stochastic Differential Equations (Neural SDEs) extend Neural ODEs by incorporating a diffusion term, although this addition is not trivial, particularly when addressing irregular intervals and missing values. Consequently, careful design of drift and diffusion functions is crucial for maintaining stability and enhancing performance, while incautious choices can result in adverse properties such as the absence of strong solutions, stochastic destabilization, or unstable Euler discretizations, significantly affecting Neural SDEs' performance. In this study, we propose three stable classes of Neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE. Then, we rigorously demonstrate their robustness in maintaining excellent performance under distribution shift, while effectively preventing overfitting. To assess the effectiveness of our approach, we conduct extensive experiments on four benchmark datasets for interpolation, forecasting, and classification tasks, and analyze the robustness of our methods with 30 public datasets under different missing rates. Our results demonstrate the efficacy of the proposed method in handling real-world irregular time series data.
Implicit Neural Spatial Representations for Time-dependent PDEs
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
Neuralangelo: High-Fidelity Neural Surface Reconstruction
Neural surface reconstruction has been shown to be powerful for recovering dense 3D surfaces via image-based neural rendering. However, current methods struggle to recover detailed structures of real-world scenes. To address the issue, we present Neuralangelo, which combines the representation power of multi-resolution 3D hash grids with neural surface rendering. Two key ingredients enable our approach: (1) numerical gradients for computing higher-order derivatives as a smoothing operation and (2) coarse-to-fine optimization on the hash grids controlling different levels of details. Even without auxiliary inputs such as depth, Neuralangelo can effectively recover dense 3D surface structures from multi-view images with fidelity significantly surpassing previous methods, enabling detailed large-scale scene reconstruction from RGB video captures.
A nonintrusive method to approximate linear systems with nonlinear parameter dependence
We consider a family of linear systems A_mu alpha=C with system matrix A_mu depending on a parameter mu and for simplicity parameter-independent right-hand side C. These linear systems typically result from the finite-dimensional approximation of a parameter-dependent boundary-value problem. We derive a procedure based on the Empirical Interpolation Method to obtain a separated representation of the system matrix in the form A_muapproxsum_{m}beta_m(mu)A_{mu_m} for some selected values of the parameter. Such a separated representation is in particular useful in the Reduced Basis Method. The procedure is called nonintrusive since it only requires to access the matrices A_{mu_m}. As such, it offers a crucial advantage over existing approaches that instead derive separated representations requiring to enter the code at the level of assembly. Numerical examples illustrate the performance of our new procedure on a simple one-dimensional boundary-value problem and on three-dimensional acoustic scattering problems solved by a boundary element method.
HiFace: High-Fidelity 3D Face Reconstruction by Learning Static and Dynamic Details
3D Morphable Models (3DMMs) demonstrate great potential for reconstructing faithful and animatable 3D facial surfaces from a single image. The facial surface is influenced by the coarse shape, as well as the static detail (e,g., person-specific appearance) and dynamic detail (e.g., expression-driven wrinkles). Previous work struggles to decouple the static and dynamic details through image-level supervision, leading to reconstructions that are not realistic. In this paper, we aim at high-fidelity 3D face reconstruction and propose HiFace to explicitly model the static and dynamic details. Specifically, the static detail is modeled as the linear combination of a displacement basis, while the dynamic detail is modeled as the linear interpolation of two displacement maps with polarized expressions. We exploit several loss functions to jointly learn the coarse shape and fine details with both synthetic and real-world datasets, which enable HiFace to reconstruct high-fidelity 3D shapes with animatable details. Extensive quantitative and qualitative experiments demonstrate that HiFace presents state-of-the-art reconstruction quality and faithfully recovers both the static and dynamic details. Our project page can be found at https://project-hiface.github.io.
Neural Spectral Methods: Self-supervised learning in the spectral domain
We present Neural Spectral Methods, a technique to solve parametric Partial Differential Equations (PDEs), grounded in classical spectral methods. Our method uses orthogonal bases to learn PDE solutions as mappings between spectral coefficients. In contrast to current machine learning approaches which enforce PDE constraints by minimizing the numerical quadrature of the residuals in the spatiotemporal domain, we leverage Parseval's identity and introduce a new training strategy through a spectral loss. Our spectral loss enables more efficient differentiation through the neural network, and substantially reduces training complexity. At inference time, the computational cost of our method remains constant, regardless of the spatiotemporal resolution of the domain. Our experimental results demonstrate that our method significantly outperforms previous machine learning approaches in terms of speed and accuracy by one to two orders of magnitude on multiple different problems. When compared to numerical solvers of the same accuracy, our method demonstrates a 10times increase in performance speed.
A Fast Summation Method for translation invariant kernels
We derive a Fast Multipole Method (FMM) where a low-rank approximation of the kernel is obtained using the Empirical Interpolation Method (EIM). Contrary to classical interpolation-based FMM, where the interpolation points and basis are fixed beforehand, the EIM is a nonlinear approximation method which constructs interpolation points and basis which are adapted to the kernel under consideration. The basis functions are obtained using evaluations of the kernel itself. We restrict ourselves to translation-invariant kernels, for which a modified version of the EIM approximation can be used in a multilevel FMM context; we call the obtained algorithm Empirical Interpolation Fast Multipole Method (EIFMM). An important feature of the EIFMM is a built-in error estimation of the interpolation error made by the low-rank approximation of the far-field behavior of the kernel: the algorithm selects the optimal number of interpolation points required to ensure a given accuracy for the result, leading to important gains for inhomogeneous kernels.
Graph-based Virtual Sensing from Sparse and Partial Multivariate Observations
Virtual sensing techniques allow for inferring signals at new unmonitored locations by exploiting spatio-temporal measurements coming from physical sensors at different locations. However, as the sensor coverage becomes sparse due to costs or other constraints, physical proximity cannot be used to support interpolation. In this paper, we overcome this challenge by leveraging dependencies between the target variable and a set of correlated variables (covariates) that can frequently be associated with each location of interest. From this viewpoint, covariates provide partial observability, and the problem consists of inferring values for unobserved channels by exploiting observations at other locations to learn how such variables can correlate. We introduce a novel graph-based methodology to exploit such relationships and design a graph deep learning architecture, named GgNet, implementing the framework. The proposed approach relies on propagating information over a nested graph structure that is used to learn dependencies between variables as well as locations. GgNet is extensively evaluated under different virtual sensing scenarios, demonstrating higher reconstruction accuracy compared to the state-of-the-art.
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Optimizing neural networks with loss that contain high-dimensional and high-order differential operators is expensive to evaluate with back-propagation due to O(d^{k}) scaling of the derivative tensor size and the O(2^{k-1}L) scaling in the computation graph, where d is the dimension of the domain, L is the number of ops in the forward computation graph, and k is the derivative order. In previous works, the polynomial scaling in d was addressed by amortizing the computation over the optimization process via randomization. Separately, the exponential scaling in k for univariate functions (d=1) was addressed with high-order auto-differentiation (AD). In this work, we show how to efficiently perform arbitrary contraction of the derivative tensor of arbitrary order for multivariate functions, by properly constructing the input tangents to univariate high-order AD, which can be used to efficiently randomize any differential operator. When applied to Physics-Informed Neural Networks (PINNs), our method provides >1000times speed-up and >30times memory reduction over randomization with first-order AD, and we can now solve 1-million-dimensional PDEs in 8 minutes on a single NVIDIA A100 GPU. This work opens the possibility of using high-order differential operators in large-scale problems.
Estimation of Non-Crossing Quantile Regression Process with Deep ReQU Neural Networks
We propose a penalized nonparametric approach to estimating the quantile regression process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep neural networks and introduce a novel penalty function to enforce non-crossing of quantile regression curves. We establish the non-asymptotic excess risk bounds for the estimated QRP and derive the mean integrated squared error for the estimated QRP under mild smoothness and regularity conditions. To establish these non-asymptotic risk and estimation error bounds, we also develop a new error bound for approximating C^s smooth functions with s >0 and their derivatives using ReQU activated neural networks. This is a new approximation result for ReQU networks and is of independent interest and may be useful in other problems. Our numerical experiments demonstrate that the proposed method is competitive with or outperforms two existing methods, including methods using reproducing kernels and random forests, for nonparametric quantile regression.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging
We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.
Space and Time Continuous Physics Simulation From Partial Observations
Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.
Predicting Change, Not States: An Alternate Framework for Neural PDE Surrogates
Neural surrogates for partial differential equations (PDEs) have become popular due to their potential to quickly simulate physics. With a few exceptions, neural surrogates generally treat the forward evolution of time-dependent PDEs as a black box by directly predicting the next state. While this is a natural and easy framework for applying neural surrogates, it can be an over-simplified and rigid framework for predicting physics. In this work, we propose an alternative framework in which neural solvers predict the temporal derivative and an ODE integrator forwards the solution in time, which has little overhead and is broadly applicable across model architectures and PDEs. We find that by simply changing the training target and introducing numerical integration during inference, neural surrogates can gain accuracy and stability. Predicting temporal derivatives also allows models to not be constrained to a specific temporal discretization, allowing for flexible time-stepping during inference or training on higher-resolution PDE data. Lastly, we investigate why this new framework can be beneficial and in what situations does it work well.
Generalizable Human Gaussians for Sparse View Synthesis
Recent progress in neural rendering has brought forth pioneering methods, such as NeRF and Gaussian Splatting, which revolutionize view rendering across various domains like AR/VR, gaming, and content creation. While these methods excel at interpolating {\em within the training data}, the challenge of generalizing to new scenes and objects from very sparse views persists. Specifically, modeling 3D humans from sparse views presents formidable hurdles due to the inherent complexity of human geometry, resulting in inaccurate reconstructions of geometry and textures. To tackle this challenge, this paper leverages recent advancements in Gaussian Splatting and introduces a new method to learn generalizable human Gaussians that allows photorealistic and accurate view-rendering of a new human subject from a limited set of sparse views in a feed-forward manner. A pivotal innovation of our approach involves reformulating the learning of 3D Gaussian parameters into a regression process defined on the 2D UV space of a human template, which allows leveraging the strong geometry prior and the advantages of 2D convolutions. In addition, a multi-scaffold is proposed to effectively represent the offset details. Our method outperforms recent methods on both within-dataset generalization as well as cross-dataset generalization settings.
Tangent Transformers for Composition, Privacy and Removal
We introduce Tangent Attention Fine-Tuning (TAFT), a method for fine-tuning linearized transformers obtained by computing a First-order Taylor Expansion around a pre-trained initialization. We show that the Jacobian-Vector Product resulting from linearization can be computed efficiently in a single forward pass, reducing training and inference cost to the same order of magnitude as its original non-linear counterpart, while using the same number of parameters. Furthermore, we show that, when applied to various downstream visual classification tasks, the resulting Tangent Transformer fine-tuned with TAFT can perform comparably with fine-tuning the original non-linear network. Since Tangent Transformers are linear with respect to the new set of weights, and the resulting fine-tuning loss is convex, we show that TAFT enjoys several advantages compared to non-linear fine-tuning when it comes to model composition, parallel training, machine unlearning, and differential privacy.
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit, thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f_theta (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinite-width limit, the network function f_theta follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.
Neural Spline Flows
A normalizing flow models a complex probability density as an invertible transformation of a simple base density. Flows based on either coupling or autoregressive transforms both offer exact density evaluation and sampling, but rely on the parameterization of an easily invertible elementwise transformation, whose choice determines the flexibility of these models. Building upon recent work, we propose a fully-differentiable module based on monotonic rational-quadratic splines, which enhances the flexibility of both coupling and autoregressive transforms while retaining analytic invertibility. We demonstrate that neural spline flows improve density estimation, variational inference, and generative modeling of images.
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Despite their many desirable properties, Gaussian processes (GPs) are often compared unfavorably to deep neural networks (NNs) for lacking the ability to learn representations. Recent efforts to bridge the gap between GPs and deep NNs have yielded a new class of inter-domain variational GPs in which the inducing variables correspond to hidden units of a feedforward NN. In this work, we examine some practical issues associated with this approach and propose an extension that leverages the orthogonal decomposition of GPs to mitigate these limitations. In particular, we introduce spherical inter-domain features to construct more flexible data-dependent basis functions for both the principal and orthogonal components of the GP approximation and show that incorporating NN activation features under this framework not only alleviates these shortcomings but is more scalable than alternative strategies. Experiments on multiple benchmark datasets demonstrate the effectiveness of our approach.
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
Exploiting partial first-order information in a cyclic way is arguably the most natural strategy to obtain scalable first-order methods. However, despite their wide use in practice, cyclic schemes are far less understood from a theoretical perspective than their randomized counterparts. Motivated by a recent success in analyzing an extrapolated cyclic scheme for generalized variational inequalities, we propose an Accelerated Cyclic Coordinate Dual Averaging with Extrapolation (A-CODER) method for composite convex optimization, where the objective function can be expressed as the sum of a smooth convex function accessible via a gradient oracle and a convex, possibly nonsmooth, function accessible via a proximal oracle. We show that A-CODER attains the optimal convergence rate with improved dependence on the number of blocks compared to prior work. Furthermore, for the setting where the smooth component of the objective function is expressible in a finite sum form, we introduce a variance-reduced variant of A-CODER, VR-A-CODER, with state-of-the-art complexity guarantees. Finally, we demonstrate the effectiveness of our algorithms through numerical experiments.
Stochastic interpolants with data-dependent couplings
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to couple the base and the target densities. This enables us to incorporate information about class labels or continuous embeddings to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.
A Nonintrusive Distributed Reduced Order Modeling Framework for nonlinear structural mechanics -- application to elastoviscoplastic computations
In this work, we propose a framework that constructs reduced order models for nonlinear structural mechanics in a nonintrusive fashion, and can handle large scale simulations. We identify three steps that are carried out separately in time, and possibly on different devices: (i) the production of high-fidelity solutions by a commercial software, (ii) the offline stage of the model reduction and (iii) the online stage where the reduced order model is exploited. The nonintrusivity assumes that only the displacement field solution is known, and relies on operations on simulation data during the offline phase by using an in-house code. The compatibility with a new commercial code only needs the implementation of a routine converting the mesh and result format into our in-house data format. The nonintrusive capabilities of the framework are demonstrated on numerical experiments using commercial versions of the finite element softwares Zset and Ansys Mechanical. The nonlinear constitutive equations are evaluated by using the same external plugins as for Zset or Ansys Mechanical. The large scale simulations are handled using domain decomposition and parallel computing with distributed memory. The features and performances of the framework are evaluated on two numerical applications involving elastoviscoplastic materials: the second one involves a model of high-pressure blade, where the framework is used to extrapolate cyclic loadings in 6.5 hours, whereas the reference high-fidelity computation would take 9.5 days.
Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics
Learning physical simulations has been an essential and central aspect of many recent research efforts in machine learning, particularly for Navier-Stokes-based fluid mechanics. Classic numerical solvers have traditionally been computationally expensive and challenging to use in inverse problems, whereas Neural solvers aim to address both concerns through machine learning. We propose a general formulation for continuous convolutions using separable basis functions as a superset of existing methods and evaluate a large set of basis functions in the context of (a) a compressible 1D SPH simulation, (b) a weakly compressible 2D SPH simulation, and (c) an incompressible 2D SPH Simulation. We demonstrate that even and odd symmetries included in the basis functions are key aspects of stability and accuracy. Our broad evaluation shows that Fourier-based continuous convolutions outperform all other architectures regarding accuracy and generalization. Finally, using these Fourier-based networks, we show that prior inductive biases, such as window functions, are no longer necessary. An implementation of our approach, as well as complete datasets and solver implementations, is available at https://github.com/tum-pbs/SFBC.
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
The growth of the Machine-Learning-As-A-Service (MLaaS) market has highlighted clients' data privacy and security issues. Private inference (PI) techniques using cryptographic primitives offer a solution but often have high computation and communication costs, particularly with non-linear operators like ReLU. Many attempts to reduce ReLU operations exist, but they may need heuristic threshold selection or cause substantial accuracy loss. This work introduces AutoReP, a gradient-based approach to lessen non-linear operators and alleviate these issues. It automates the selection of ReLU and polynomial functions to speed up PI applications and introduces distribution-aware polynomial approximation (DaPa) to maintain model expressivity while accurately approximating ReLUs. Our experimental results demonstrate significant accuracy improvements of 6.12% (94.31%, 12.9K ReLU budget, CIFAR-10), 8.39% (74.92%, 12.9K ReLU budget, CIFAR-100), and 9.45% (63.69%, 55K ReLU budget, Tiny-ImageNet) over current state-of-the-art methods, e.g., SNL. Morever, AutoReP is applied to EfficientNet-B2 on ImageNet dataset, and achieved 75.55% accuracy with 176.1 times ReLU budget reduction.
Benign Overfitting in Deep Neural Networks under Lazy Training
This paper focuses on over-parameterized deep neural networks (DNNs) with ReLU activation functions and proves that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification while obtaining (nearly) zero-training error under the lazy training regime. For this purpose, we unify three interrelated concepts of overparameterization, benign overfitting, and the Lipschitz constant of DNNs. Our results indicate that interpolating with smoother functions leads to better generalization. Furthermore, we investigate the special case where interpolating smooth ground-truth functions is performed by DNNs under the Neural Tangent Kernel (NTK) regime for generalization. Our result demonstrates that the generalization error converges to a constant order that only depends on label noise and initialization noise, which theoretically verifies benign overfitting. Our analysis provides a tight lower bound on the normalized margin under non-smooth activation functions, as well as the minimum eigenvalue of NTK under high-dimensional settings, which has its own interest in learning theory.
Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization
Various optimal gradient-based algorithms have been developed for smooth nonconvex optimization. However, many nonconvex machine learning problems do not belong to the class of smooth functions and therefore the existing algorithms are sub-optimal. Instead, these problems have been shown to satisfy certain generalized-smooth conditions, which have not been well understood in the existing literature. In this paper, we propose a notion of alpha-symmetric generalized-smoothness that extends the existing notions and covers many important functions such as high-order polynomials and exponential functions. We study the fundamental properties and establish descent lemmas for the functions in this class. Then, to solve such a large class of nonconvex problems, we design a special deterministic normalized gradient descent algorithm that achieves the optimal iteration complexity O(epsilon^{-2}), and also prove that the popular SPIDER variance reduction algorithm achieves the optimal sample complexity O(epsilon^{-3}) in the stochastic setting. Our results show that solving generalized-smooth nonconvex problems is as efficient as solving smooth nonconvex problems.
Density Modeling of Images using a Generalized Normalization Transformation
We introduce a parametric nonlinear transformation that is well-suited for Gaussianizing data from natural images. The data are linearly transformed, and each component is then normalized by a pooled activity measure, computed by exponentiating a weighted sum of rectified and exponentiated components and a constant. We optimize the parameters of the full transformation (linear transform, exponents, weights, constant) over a database of natural images, directly minimizing the negentropy of the responses. The optimized transformation substantially Gaussianizes the data, achieving a significantly smaller mutual information between transformed components than alternative methods including ICA and radial Gaussianization. The transformation is differentiable and can be efficiently inverted, and thus induces a density model on images. We show that samples of this model are visually similar to samples of natural image patches. We demonstrate the use of the model as a prior probability density that can be used to remove additive noise. Finally, we show that the transformation can be cascaded, with each layer optimized using the same Gaussianization objective, thus offering an unsupervised method of optimizing a deep network architecture.
Textured 3D Regenerative Morphing with 3D Diffusion Prior
Textured 3D morphing creates smooth and plausible interpolation sequences between two 3D objects, focusing on transitions in both shape and texture. This is important for creative applications like visual effects in filmmaking. Previous methods rely on establishing point-to-point correspondences and determining smooth deformation trajectories, which inherently restrict them to shape-only morphing on untextured, topologically aligned datasets. This restriction leads to labor-intensive preprocessing and poor generalization. To overcome these challenges, we propose a method for 3D regenerative morphing using a 3D diffusion prior. Unlike previous methods that depend on explicit correspondences and deformations, our method eliminates the additional need for obtaining correspondence and uses the 3D diffusion prior to generate morphing. Specifically, we introduce a 3D diffusion model and interpolate the source and target information at three levels: initial noise, model parameters, and condition features. We then explore an Attention Fusion strategy to generate more smooth morphing sequences. To further improve the plausibility of semantic interpolation and the generated 3D surfaces, we propose two strategies: (a) Token Reordering, where we match approximate tokens based on semantic analysis to guide implicit correspondences in the denoising process of the diffusion model, and (b) Low-Frequency Enhancement, where we enhance low-frequency signals in the tokens to improve the quality of generated surfaces. Experimental results show that our method achieves superior smoothness and plausibility in 3D morphing across diverse cross-category object pairs, offering a novel regenerative method for 3D morphing with textured representations.
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper investigates the distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) designed for differentiable functions. First, we demonstrate significant differences in the convergence properties of NGDMs compared to GDs, challenging the applicability of the extensive neural network convergence literature based on L-smoothness to non-smooth neural networks. Next, we demonstrate the paradoxical nature of NGDM solutions for L_{1}-regularized problems, showing that increasing the regularization penalty leads to an increase in the L_{1} norm of optimal solutions in NGDMs. Consequently, we show that widely adopted L_{1} penalization-based techniques for network pruning do not yield expected results. Finally, we explore the Edge of Stability phenomenon, indicating its inapplicability even to Lipschitz continuous convex differentiable functions, leaving its relevance to non-convex non-differentiable neural networks inconclusive. Our analysis exposes misguided interpretations of NGDMs in widely referenced papers and texts due to an overreliance on strong smoothness assumptions, emphasizing the necessity for a nuanced understanding of foundational assumptions in the analysis of these systems.
Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation
Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead.
FITS: Modeling Time Series with 10k Parameters
In this paper, we introduce FITS, a lightweight yet powerful model for time series analysis. Unlike existing models that directly process raw time-domain data, FITS operates on the principle that time series can be manipulated through interpolation in the complex frequency domain. By discarding high-frequency components with negligible impact on time series data, FITS achieves performance comparable to state-of-the-art models for time series forecasting and anomaly detection tasks, while having a remarkably compact size of only approximately 10k parameters. Such a lightweight model can be easily trained and deployed in edge devices, creating opportunities for various applications. The code is available in: https://github.com/VEWOXIC/FITS
Deep Geometrized Cartoon Line Inbetweening
We aim to address a significant but understudied problem in the anime industry, namely the inbetweening of cartoon line drawings. Inbetweening involves generating intermediate frames between two black-and-white line drawings and is a time-consuming and expensive process that can benefit from automation. However, existing frame interpolation methods that rely on matching and warping whole raster images are unsuitable for line inbetweening and often produce blurring artifacts that damage the intricate line structures. To preserve the precision and detail of the line drawings, we propose a new approach, AnimeInbet, which geometrizes raster line drawings into graphs of endpoints and reframes the inbetweening task as a graph fusion problem with vertex repositioning. Our method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening. This is made possible via our novel modules, i.e., vertex geometric embedding, a vertex correspondence Transformer, an effective mechanism for vertex repositioning and a visibility predictor. To train our method, we introduce MixamoLine240, a new dataset of line drawings with ground truth vectorization and matching labels. Our experiments demonstrate that AnimeInbet synthesizes high-quality, clean, and complete intermediate line drawings, outperforming existing methods quantitatively and qualitatively, especially in cases with large motions. Data and code are available at https://github.com/lisiyao21/AnimeInbet.
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
Implicit regularization of deep residual networks towards neural ODEs
Residual neural networks are state-of-the-art deep learning models. Their continuous-depth analog, neural ordinary differential equations (ODEs), are also widely used. Despite their success, the link between the discrete and continuous models still lacks a solid mathematical foundation. In this article, we take a step in this direction by establishing an implicit regularization of deep residual networks towards neural ODEs, for nonlinear networks trained with gradient flow. We prove that if the network is initialized as a discretization of a neural ODE, then such a discretization holds throughout training. Our results are valid for a finite training time, and also as the training time tends to infinity provided that the network satisfies a Polyak-Lojasiewicz condition. Importantly, this condition holds for a family of residual networks where the residuals are two-layer perceptrons with an overparameterization in width that is only linear, and implies the convergence of gradient flow to a global minimum. Numerical experiments illustrate our results.
Neural Graphics Primitives-based Deformable Image Registration for On-the-fly Motion Extraction
Intra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR). However, existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios. This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF). Our method leverages learned primitives, processed as splats, and interpolates within space using a shallow neural network. Uniquely, it enables self-supervised optimization at an ultra-fast speed, negating the need for pre-training on extensive datasets and allowing seamless adaptation to new cases. We validated this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method also addresses the sliding boundary problem, a common challenge in conventional DIR methods.
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation
Lipschitz constants are connected to many properties of neural networks, such as robustness, fairness, and generalization. Existing methods for computing Lipschitz constants either produce relatively loose upper bounds or are limited to small networks. In this paper, we develop an efficient framework for computing the ell_infty local Lipschitz constant of a neural network by tightly upper bounding the norm of Clarke Jacobian via linear bound propagation. We formulate the computation of local Lipschitz constants with a linear bound propagation process on a high-order backward graph induced by the chain rule of Clarke Jacobian. To enable linear bound propagation, we derive tight linear relaxations for specific nonlinearities in Clarke Jacobian. This formulate unifies existing ad-hoc approaches such as RecurJac, which can be seen as a special case of ours with weaker relaxations. The bound propagation framework also allows us to easily borrow the popular Branch-and-Bound (BaB) approach from neural network verification to further tighten Lipschitz constants. Experiments show that on tiny models, our method produces comparable bounds compared to exact methods that cannot scale to slightly larger models; on larger models, our method efficiently produces tighter results than existing relaxed or naive methods, and our method scales to much larger practical models that previous works could not handle. We also demonstrate an application on provable monotonicity analysis. Code is available at https://github.com/shizhouxing/Local-Lipschitz-Constants.
Two-timescale Extragradient for Finding Local Minimax Points
Minimax problems are notoriously challenging to optimize. However, we demonstrate that the two-timescale extragradient can be a viable solution. By utilizing dynamical systems theory, we show that it converges to points that satisfy the second-order necessary condition of local minimax points, under a mild condition. This work surpasses all previous results as we eliminate a crucial assumption that the Hessian, with respect to the maximization variable, is nondegenerate.
Neural Inverse Operators for Solving PDE Inverse Problems
A large class of inverse problems for PDEs are only well-defined as mappings from operators to functions. Existing operator learning frameworks map functions to functions and need to be modified to learn inverse maps from data. We propose a novel architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse problems. Motivated by the underlying mathematical structure, NIO is based on a suitable composition of DeepONets and FNOs to approximate mappings from operators to functions. A variety of experiments are presented to demonstrate that NIOs significantly outperform baselines and solve PDE inverse problems robustly, accurately and are several orders of magnitude faster than existing direct and PDE-constrained optimization methods.
Physics-aware registration based auto-encoder for convection dominated PDEs
We design a physics-aware auto-encoder to specifically reduce the dimensionality of solutions arising from convection-dominated nonlinear physical systems. Although existing nonlinear manifold learning methods seem to be compelling tools to reduce the dimensionality of data characterized by a large Kolmogorov n-width, they typically lack a straightforward mapping from the latent space to the high-dimensional physical space. Moreover, the realized latent variables are often hard to interpret. Therefore, many of these methods are often dismissed in the reduced order modeling of dynamical systems governed by the partial differential equations (PDEs). Accordingly, we propose an auto-encoder type nonlinear dimensionality reduction algorithm. The unsupervised learning problem trains a diffeomorphic spatio-temporal grid, that registers the output sequence of the PDEs on a non-uniform parameter/time-varying grid, such that the Kolmogorov n-width of the mapped data on the learned grid is minimized. We demonstrate the efficacy and interpretability of our approach to separate convection/advection from diffusion/scaling on various manufactured and physical systems.
Expressivity of ReLU-Networks under Convex Relaxations
Convex relaxations are a key component of training and certifying provably safe neural networks. However, despite substantial progress, a wide and poorly understood accuracy gap to standard networks remains, raising the question of whether this is due to fundamental limitations of convex relaxations. Initial work investigating this question focused on the simple and widely used IBP relaxation. It revealed that some univariate, convex, continuous piecewise linear (CPWL) functions cannot be encoded by any ReLU network such that its IBP-analysis is precise. To explore whether this limitation is shared by more advanced convex relaxations, we conduct the first in-depth study on the expressive power of ReLU networks across all commonly used convex relaxations. We show that: (i) more advanced relaxations allow a larger class of univariate functions to be expressed as precisely analyzable ReLU networks, (ii) more precise relaxations can allow exponentially larger solution spaces of ReLU networks encoding the same functions, and (iii) even using the most precise single-neuron relaxations, it is impossible to construct precisely analyzable ReLU networks that express multivariate, convex, monotone CPWL functions.
Collage: Light-Weight Low-Precision Strategy for LLM Training
Large models training is plagued by the intense compute cost and limited hardware memory. A practical solution is low-precision representation but is troubled by loss in numerical accuracy and unstable training rendering the model less useful. We argue that low-precision floating points can perform well provided the error is properly compensated at the critical locations in the training process. We propose Collage which utilizes multi-component float representation in low-precision to accurately perform operations with numerical errors accounted. To understand the impact of imprecision to training, we propose a simple and novel metric which tracks the lost information during training as well as differentiates various precision strategies. Our method works with commonly used low-precision such as half-precision (16-bit floating points) and can be naturally extended to work with even lower precision such as 8-bit. Experimental results show that pre-training using Collage removes the requirement of using 32-bit floating-point copies of the model and attains similar/better training performance compared to (16, 32)-bit mixed-precision strategy, with up to 3.7times speedup and sim 15% to 23% less memory usage in practice.
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.
Sensitivity Analysis On Loss Landscape
Gradients can be employed for sensitivity analysis. Here, we leverage the advantages of the Loss Landscape to comprehend which independent variables impact the dependent variable. We seek to grasp the loss landscape by utilizing first, second, and third derivatives through automatic differentiation. we know that Spearman's rank correlation coefficient can detect the monotonic relationship between two variables. However, I have found that second-order gradients, with certain configurations and parameters, provide information that can be visualized similarly to Spearman results, In this approach, we incorporate a loss function with an activation function, resulting in a non-linear pattern. Each exploration of the loss landscape through retraining yields new valuable information. Furthermore, the first and third derivatives are also beneficial, as they indicate the extent to which independent variables influence the dependent variable.
Sketched Ridgeless Linear Regression: The Role of Downsampling
Overparametrization often helps improve the generalization performance. This paper proposes a dual view of overparametrization suggesting that downsampling may also help generalize. Motivated by this dual view, we characterize two out-of-sample prediction risks of the sketched ridgeless least square estimator in the proportional regime masymp n asymp p, where m is the sketching size, n the sample size, and p the feature dimensionality. Our results reveal the statistical role of downsampling. Specifically, downsampling does not always hurt the generalization performance, and may actually help improve it in some cases. We identify the optimal sketching sizes that minimize the out-of-sample prediction risks, and find that the optimally sketched estimator has stabler risk curves that eliminates the peaks of those for the full-sample estimator. We then propose a practical procedure to empirically identify the optimal sketching size. Finally, we extend our results to cover central limit theorems and misspecified models. Numerical studies strongly support our theory.
On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLU Network
This paper explores the expressive power of deep neural networks through the framework of function compositions. We demonstrate that the repeated compositions of a single fixed-size ReLU network exhibit surprising expressive power, despite the limited expressive capabilities of the individual network itself. Specifically, we prove by construction that L_2circ g^{circ r}circ mathcal{L}_1 can approximate 1-Lipschitz continuous functions on [0,1]^d with an error O(r^{-1/d}), where g is realized by a fixed-size ReLU network, mathcal{L}_1 and L_2 are two affine linear maps matching the dimensions, and g^{circ r} denotes the r-times composition of g. Furthermore, we extend such a result to generic continuous functions on [0,1]^d with the approximation error characterized by the modulus of continuity. Our results reveal that a continuous-depth network generated via a dynamical system has immense approximation power even if its dynamics function is time-independent and realized by a fixed-size ReLU network.
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: https://github.com/shivram1987/ActivationFunctions.
On the Parameterization of Second-Order Optimization Effective Towards the Infinite Width
Second-order optimization has been developed to accelerate the training of deep neural networks and it is being applied to increasingly larger-scale models. In this study, towards training on further larger scales, we identify a specific parameterization for second-order optimization that promotes feature learning in a stable manner even if the network width increases significantly. Inspired by a maximal update parameterization, we consider a one-step update of the gradient and reveal the appropriate scales of hyperparameters including random initialization, learning rates, and damping terms. Our approach covers two major second-order optimization algorithms, K-FAC and Shampoo, and we demonstrate that our parameterization achieves higher generalization performance in feature learning. In particular, it enables us to transfer the hyperparameters across models with different widths.
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with sim1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25times speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.
HNeRV: A Hybrid Neural Representation for Videos
Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV
Variational Autoencoding Neural Operators
Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems. A natural way of modeling functional data is by learning operators between infinite dimensional spaces, leading to discretization invariant representations that scale independently of the sample grid resolution. Here we present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders. For this purpose, we provide a novel rigorous mathematical formulation of the variational objective in function spaces for training. VANO first maps an input function to a distribution over a latent space using a parametric encoder and then decodes a sample from the latent distribution to reconstruct the input, as in classic variational autoencoders. We test VANO with different model set-ups and architecture choices for a variety of benchmarks. We start from a simple Gaussian random field where we can analytically track what the model learns and progressively transition to more challenging benchmarks including modeling phase separation in Cahn-Hilliard systems and real world satellite data for measuring Earth surface deformation.
The Numerical Stability of Hyperbolic Representation Learning
Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM.
Constant Acceleration Flow
Rectified flow and reflow procedures have significantly advanced fast generation by progressively straightening ordinary differential equation (ODE) flows. They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity. However, we observe that modeling with constant velocity and using reflow procedures have limitations in accurately learning straight trajectories between pairs, resulting in suboptimal performance in few-step generation. To address these limitations, we introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation. CAF introduces acceleration as an additional learnable variable, allowing for more expressive and accurate estimation of the ODE flow. Moreover, we propose two techniques to further improve estimation accuracy: initial velocity conditioning for the acceleration model and a reflow process for the initial velocity. Our comprehensive studies on toy datasets, CIFAR-10, and ImageNet 64x64 demonstrate that CAF outperforms state-of-the-art baselines for one-step generation. We also show that CAF dramatically improves few-step coupling preservation and inversion over Rectified flow. Code is available at https://github.com/mlvlab/CAF{https://github.com/mlvlab/CAF}.
Neural Kernel Surface Reconstruction
We present a novel method for reconstructing a 3D implicit surface from a large-scale, sparse, and noisy point cloud. Our approach builds upon the recently introduced Neural Kernel Fields (NKF) representation. It enjoys similar generalization capabilities to NKF, while simultaneously addressing its main limitations: (a) We can scale to large scenes through compactly supported kernel functions, which enable the use of memory-efficient sparse linear solvers. (b) We are robust to noise, through a gradient fitting solve. (c) We minimize training requirements, enabling us to learn from any dataset of dense oriented points, and even mix training data consisting of objects and scenes at different scales. Our method is capable of reconstructing millions of points in a few seconds, and handling very large scenes in an out-of-core fashion. We achieve state-of-the-art results on reconstruction benchmarks consisting of single objects, indoor scenes, and outdoor scenes.
Neural Ordinary Differential Equations
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
Function-space Parameterization of Neural Networks for Sequential Learning
Sequential learning paradigms pose challenges for gradient-based deep learning due to difficulties incorporating new data and retaining prior knowledge. While Gaussian processes elegantly tackle these problems, they struggle with scalability and handling rich inputs, such as images. To address these issues, we introduce a technique that converts neural networks from weight space to function space, through a dual parameterization. Our parameterization offers: (i) a way to scale function-space methods to large data sets via sparsification, (ii) retention of prior knowledge when access to past data is limited, and (iii) a mechanism to incorporate new data without retraining. Our experiments demonstrate that we can retain knowledge in continual learning and incorporate new data efficiently. We further show its strengths in uncertainty quantification and guiding exploration in model-based RL. Further information and code is available on the project website.
Framer: Interactive Frame Interpolation
We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Generalization error of spectral algorithms
The asymptotically precise estimation of the generalization of kernel methods has recently received attention due to the parallels between neural networks and their associated kernels. However, prior works derive such estimates for training by kernel ridge regression (KRR), whereas neural networks are typically trained with gradient descent (GD). In the present work, we consider the training of kernels with a family of spectral algorithms specified by profile h(lambda), and including KRR and GD as special cases. Then, we derive the generalization error as a functional of learning profile h(lambda) for two data models: high-dimensional Gaussian and low-dimensional translation-invariant model. Under power-law assumptions on the spectrum of the kernel and target, we use our framework to (i) give full loss asymptotics for both noisy and noiseless observations (ii) show that the loss localizes on certain spectral scales, giving a new perspective on the KRR saturation phenomenon (iii) conjecture, and demonstrate for the considered data models, the universality of the loss w.r.t. non-spectral details of the problem, but only in case of noisy observation.
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
Direct Parameterization of Lipschitz-Bounded Deep Networks
This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed ell^2 Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a ``direct'' parameterization, i.e., a smooth mapping from mathbb R^N onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.
GRAND: Graph Neural Diffusion
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE. In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators. Our approach allows a principled development of a broad new class of GNNs that are able to address the common plights of graph learning models such as depth, oversmoothing, and bottlenecks. Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes. We develop linear and nonlinear versions of GRAND, which achieve competitive results on many standard graph benchmarks.
Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
When learning simulations for modeling physical phenomena in industrial designs, geometrical variabilities are of prime interest. While classical regression techniques prove effective for parameterized geometries, practical scenarios often involve the absence of shape parametrization during the inference stage, leaving us with only mesh discretizations as available data. Learning simulations from such mesh-based representations poses significant challenges, with recent advances relying heavily on deep graph neural networks to overcome the limitations of conventional machine learning approaches. Despite their promising results, graph neural networks exhibit certain drawbacks, including their dependency on extensive datasets and limitations in providing built-in predictive uncertainties or handling large meshes. In this work, we propose a machine learning method that do not rely on graph neural networks. Complex geometrical shapes and variations with fixed topology are dealt with using well-known mesh morphing onto a common support, combined with classical dimensionality reduction techniques and Gaussian processes. The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization and provides crucial predictive uncertainties, which are essential for informed decision-making. In the considered numerical experiments, the proposed method is competitive with respect to existing graph neural networks, regarding training efficiency and accuracy of the predictions.
Topological Singularity Detection at Multiple Scales
The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
Functorial Manifold Learning
We adapt previous research on category theory and topological unsupervised learning to develop a functorial perspective on manifold learning, also known as nonlinear dimensionality reduction. We first characterize manifold learning algorithms as functors that map pseudometric spaces to optimization objectives and that factor through hierarchical clustering functors. We then use this characterization to prove refinement bounds on manifold learning loss functions and construct a hierarchy of manifold learning algorithms based on their equivariants. We express several popular manifold learning algorithms as functors at different levels of this hierarchy, including Metric Multidimensional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a broad class of manifold learning algorithms. We present bounds on how closely the embeddings these algorithms produce from noisy data approximate the embeddings they would learn from noiseless data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which we experimentally demonstrate are competitive with the state of the art.
Nonparametric Teaching of Implicit Neural Representations
We investigate the learning of implicit neural representation (INR) using an overparameterized multilayer perceptron (MLP) via a novel nonparametric teaching perspective. The latter offers an efficient example selection framework for teaching nonparametrically defined (viz. non-closed-form) target functions, such as image functions defined by 2D grids of pixels. To address the costly training of INRs, we propose a paradigm called Implicit Neural Teaching (INT) that treats INR learning as a nonparametric teaching problem, where the given signal being fitted serves as the target function. The teacher then selects signal fragments for iterative training of the MLP to achieve fast convergence. By establishing a connection between MLP evolution through parameter-based gradient descent and that of function evolution through functional gradient descent in nonparametric teaching, we show for the first time that teaching an overparameterized MLP is consistent with teaching a nonparametric learner. This new discovery readily permits a convenient drop-in of nonparametric teaching algorithms to broadly enhance INR training efficiency, demonstrating 30%+ training time savings across various input modalities.
TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations
This work proposes a novel representation of injective deformations of 3D space, which overcomes existing limitations of injective methods: inaccuracy, lack of robustness, and incompatibility with general learning and optimization frameworks. The core idea is to reduce the problem to a deep composition of multiple 2D mesh-based piecewise-linear maps. Namely, we build differentiable layers that produce mesh deformations through Tutte's embedding (guaranteed to be injective in 2D), and compose these layers over different planes to create complex 3D injective deformations of the 3D volume. We show our method provides the ability to efficiently and accurately optimize and learn complex deformations, outperforming other injective approaches. As a main application, we produce complex and artifact-free NeRF and SDF deformations.
Operator Learning with Neural Fields: Tackling PDEs on General Geometries
Machine learning approaches for solving partial differential equations require learning mappings between function spaces. While convolutional or graph neural networks are constrained to discretized functions, neural operators present a promising milestone toward mapping functions directly. Despite impressive results they still face challenges with respect to the domain geometry and typically rely on some form of discretization. In order to alleviate such limitations, we present CORAL, a new method that leverages coordinate-based networks for solving PDEs on general geometries. CORAL is designed to remove constraints on the input mesh, making it applicable to any spatial sampling and geometry. Its ability extends to diverse problem domains, including PDE solving, spatio-temporal forecasting, and inverse problems like geometric design. CORAL demonstrates robust performance across multiple resolutions and performs well in both convex and non-convex domains, surpassing or performing on par with state-of-the-art models.
State and parameter learning with PaRIS particle Gibbs
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the i-th neuron in a nonlinear operator layer is defined by mathcal O_i(u) = sigmaleft( sum_j mathcal W_{ij} u + mathcal B_{ij}right). Here, mathcal W_{ij} denotes the bounded linear operator connecting j-th input neuron to i-th output neuron, and the bias mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Machine learning for differential equations paves the way for computationally efficient alternatives to numerical solvers, with potentially broad impacts in science and engineering. Though current algorithms typically require simulated training data tailored to a given setting, one may instead wish to learn useful information from heterogeneous sources, or from real dynamical systems observations that are messy or incomplete. In this work, we learn general-purpose representations of PDEs from heterogeneous data by implementing joint embedding methods for self-supervised learning (SSL), a framework for unsupervised representation learning that has had notable success in computer vision. Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers. We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated SGD under the strong growth condition. In this special case, our analysis reduces the dependence on the strong growth constant from rho to rho as compared to prior work. This improvement is comparable to a square-root of the condition number in the worst case and address criticism that guarantees for stochastic acceleration could be worse than those for SGD.
A nonintrusive Reduced Basis Method applied to aeroacoustic simulations
The Reduced Basis Method can be exploited in an efficient way only if the so-called affine dependence assumption on the operator and right-hand side of the considered problem with respect to the parameters is satisfied. When it is not, the Empirical Interpolation Method is usually used to recover this assumption approximately. In both cases, the Reduced Basis Method requires to access and modify the assembly routines of the corresponding computational code, leading to an intrusive procedure. In this work, we derive variants of the EIM algorithm and explain how they can be used to turn the Reduced Basis Method into a nonintrusive procedure. We present examples of aeroacoustic problems solved by integral equations and show how our algorithms can benefit from the linear algebra tools available in the considered code.
Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting
Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics. Despite advancements in neural implicit models, limitations persist: (i) Inadequate Scene Structure: Existing methods struggle to reveal the spatial and temporal structure of dynamic scenes from directly learning the complex 6D plenoptic function. (ii) Scaling Deformation Modeling: Explicitly modeling scene element deformation becomes impractical for complex dynamics. To address these issues, we consider the spacetime as an entirety and propose to approximate the underlying spatio-temporal 4D volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling. Learning to optimize the 4D primitives enables us to synthesize novel views at any desired time with our tailored rendering routine. Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics. This approach offers simplicity, flexibility for variable-length video and end-to-end training, and efficient real-time rendering, making it suitable for capturing complex dynamic scene motions. Experiments across various benchmarks, including monocular and multi-view scenarios, demonstrate our 4DGS model's superior visual quality and efficiency.
Neural Parametric Gaussians for Monocular Non-Rigid Object Reconstruction
Reconstructing dynamic objects from monocular videos is a severely underconstrained and challenging problem, and recent work has approached it in various directions. However, owing to the ill-posed nature of this problem, there has been no solution that can provide consistent, high-quality novel views from camera positions that are significantly different from the training views. In this work, we introduce Neural Parametric Gaussians (NPGs) to take on this challenge by imposing a two-stage approach: first, we fit a low-rank neural deformation model, which then is used as regularization for non-rigid reconstruction in the second stage. The first stage learns the object's deformations such that it preserves consistency in novel views. The second stage obtains high reconstruction quality by optimizing 3D Gaussians that are driven by the coarse model. To this end, we introduce a local 3D Gaussian representation, where temporally shared Gaussians are anchored in and deformed by local oriented volumes. The resulting combined model can be rendered as radiance fields, resulting in high-quality photo-realistic reconstructions of the non-rigidly deforming objects, maintaining 3D consistency across novel views. We demonstrate that NPGs achieve superior results compared to previous works, especially in challenging scenarios with few multi-view cues.
Adversarially Robust PAC Learnability of Real-Valued Functions
We study robustness to test-time adversarial attacks in the regression setting with ell_p losses and arbitrary perturbation sets. We address the question of which function classes are PAC learnable in this setting. We show that classes of finite fat-shattering dimension are learnable in both realizable and agnostic settings. Moreover, for convex function classes, they are even properly learnable. In contrast, some non-convex function classes provably require improper learning algorithms. Our main technique is based on a construction of an adversarially robust sample compression scheme of a size determined by the fat-shattering dimension. Along the way, we introduce a novel agnostic sample compression scheme for real-valued functions, which may be of independent interest.
REACTO: Reconstructing Articulated Objects from a Single Video
In this paper, we address the challenge of reconstructing general articulated 3D objects from a single video. Existing works employing dynamic neural radiance fields have advanced the modeling of articulated objects like humans and animals from videos, but face challenges with piece-wise rigid general articulated objects due to limitations in their deformation models. To tackle this, we propose Quasi-Rigid Blend Skinning, a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints. Our primary insight combines three distinct approaches: 1) an enhanced bone rigging system for improved component modeling, 2) the use of quasi-sparse skinning weights to boost part rigidity and reconstruction fidelity, and 3) the application of geodesic point assignment for precise motion and seamless deformation. Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects, as demonstrated on both real and synthetic datasets. Project page: https://chaoyuesong.github.io/REACTO.
Leveraging Intrinsic Properties for Non-Rigid Garment Alignment
We address the problem of aligning real-world 3D data of garments, which benefits many applications such as texture learning, physical parameter estimation, generative modeling of garments, etc. Existing extrinsic methods typically perform non-rigid iterative closest point and struggle to align details due to incorrect closest matches and rigidity constraints. While intrinsic methods based on functional maps can produce high-quality correspondences, they work under isometric assumptions and become unreliable for garment deformations which are highly non-isometric. To achieve wrinkle-level as well as texture-level alignment, we present a novel coarse-to-fine two-stage method that leverages intrinsic manifold properties with two neural deformation fields, in the 3D space and the intrinsic space, respectively. The coarse stage performs a 3D fitting, where we leverage intrinsic manifold properties to define a manifold deformation field. The coarse fitting then induces a functional map that produces an alignment of intrinsic embeddings. We further refine the intrinsic alignment with a second neural deformation field for higher accuracy. We evaluate our method with our captured garment dataset, GarmCap. The method achieves accurate wrinkle-level and texture-level alignment and works for difficult garment types such as long coats. Our project page is https://jsnln.github.io/iccv2023_intrinsic/index.html.
Real-Time Intermediate Flow Estimation for Video Frame Interpolation
Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4--27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. The code is available at https://github.com/megvii-research/ECCV2022-RIFE.
Bootstrability in Line-Defect CFT with Improved Truncation Methods
We study the conformal bootstrap of 1D CFTs on the straight Maldacena-Wilson line in 4D {cal N}=4 super-Yang-Mills theory. We introduce an improved truncation scheme with an 'OPE tail' approximation and use it to reproduce the 'bootstrability' results of Cavagli\`a et al. for the OPE-coefficients squared of the first three unprotected operators. For example, for the first OPE-coefficient squared at 't Hooft coupling (4pi)^2, linear-functional methods with two sum rules from integrated correlators give the rigorous result 0.294014873 pm 4.88 cdot 10^{-8}, whereas our methods give with machine-precision computations 0.294014228 pm 6.77 cdot 10^{-7}. For our numerical searches, we benchmark the Reinforcement Learning Soft Actor-Critic algorithm against an Interior Point Method algorithm (IPOPT) and comment on the merits of each algorithm.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels
Temporal point processes (TPP) are a natural tool for modeling event-based data. Among all TPP models, Hawkes processes have proven to be the most widely used, mainly due to their adequate modeling for various applications, particularly when considering exponential or non-parametric kernels. Although non-parametric kernels are an option, such models require large datasets. While exponential kernels are more data efficient and relevant for specific applications where events immediately trigger more events, they are ill-suited for applications where latencies need to be estimated, such as in neuroscience. This work aims to offer an efficient solution to TPP inference using general parametric kernels with finite support. The developed solution consists of a fast ell_2 gradient-based solver leveraging a discretized version of the events. After theoretically supporting the use of discretization, the statistical and computational efficiency of the novel approach is demonstrated through various numerical experiments. Finally, the method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG). Given the use of general parametric kernels, results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
The boundary of neural network trainability is fractal
Some fractals -- for instance those associated with the Mandelbrot and quadratic Julia sets -- are computed by iterating a function, and identifying the boundary between hyperparameters for which the resulting series diverges or remains bounded. Neural network training similarly involves iterating an update function (e.g. repeated steps of gradient descent), can result in convergent or divergent behavior, and can be extremely sensitive to small changes in hyperparameters. Motivated by these similarities, we experimentally examine the boundary between neural network hyperparameters that lead to stable and divergent training. We find that this boundary is fractal over more than ten decades of scale in all tested configurations.
Implicit Neural Representations and the Algebra of Complex Wavelets
Implicit neural representations (INRs) have arisen as useful methods for representing signals on Euclidean domains. By parameterizing an image as a multilayer perceptron (MLP) on Euclidean space, INRs effectively represent signals in a way that couples spatial and spectral features of the signal that is not obvious in the usual discrete representation, paving the way for continuous signal processing and machine learning approaches that were not previously possible. Although INRs using sinusoidal activation functions have been studied in terms of Fourier theory, recent works have shown the advantage of using wavelets instead of sinusoids as activation functions, due to their ability to simultaneously localize in both frequency and space. In this work, we approach such INRs and demonstrate how they resolve high-frequency features of signals from coarse approximations done in the first layer of the MLP. This leads to multiple prescriptions for the design of INR architectures, including the use of complex wavelets, decoupling of low and band-pass approximations, and initialization schemes based on the singularities of the desired signal.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
VeGaS: Video Gaussian Splatting
Implicit Neural Representations (INRs) employ neural networks to approximate discrete data as continuous functions. In the context of video data, such models can be utilized to transform the coordinates of pixel locations along with frame occurrence times (or indices) into RGB color values. Although INRs facilitate effective compression, they are unsuitable for editing purposes. One potential solution is to use a 3D Gaussian Splatting (3DGS) based model, such as the Video Gaussian Representation (VGR), which is capable of encoding video as a multitude of 3D Gaussians and is applicable for numerous video processing operations, including editing. Nevertheless, in this case, the capacity for modification is constrained to a limited set of basic transformations. To address this issue, we introduce the Video Gaussian Splatting (VeGaS) model, which enables realistic modifications of video data. To construct VeGaS, we propose a novel family of Folded-Gaussian distributions designed to capture nonlinear dynamics in a video stream and model consecutive frames by 2D Gaussians obtained as respective conditional distributions. Our experiments demonstrate that VeGaS outperforms state-of-the-art solutions in frame reconstruction tasks and allows realistic modifications of video data. The code is available at: https://github.com/gmum/VeGaS.
Exploring Quality and Generalizability in Parameterized Neural Audio Effects
Deep neural networks have shown promise for music audio signal processing applications, often surpassing prior approaches, particularly as end-to-end models in the waveform domain. Yet results to date have tended to be constrained by low sample rates, noise, narrow domains of signal types, and/or lack of parameterized controls (i.e. "knobs"), making their suitability for professional audio engineering workflows still lacking. This work expands on prior research published on modeling nonlinear time-dependent signal processing effects associated with music production by means of a deep neural network, one which includes the ability to emulate the parameterized settings you would see on an analog piece of equipment, with the goal of eventually producing commercially viable, high quality audio, i.e. 44.1 kHz sampling rate at 16-bit resolution. The results in this paper highlight progress in modeling these effects through architecture and optimization changes, towards increasing computational efficiency, lowering signal-to-noise ratio, and extending to a larger variety of nonlinear audio effects. Toward these ends, the strategies employed involved a three-pronged approach: model speed, model accuracy, and model generalizability. Most of the presented methods provide marginal or no increase in output accuracy over the original model, with the exception of dataset manipulation. We found that limiting the audio content of the dataset, for example using datasets of just a single instrument, provided a significant improvement in model accuracy over models trained on more general datasets.
Efficient and Modular Implicit Differentiation
Automatic differentiation (autodiff) has revolutionized machine learning. It allows to express complex computations by composing elementary ones in creative ways and removes the burden of computing their derivatives by hand. More recently, differentiation of optimization problem solutions has attracted widespread attention with applications such as optimization layers, and in bi-level problems such as hyper-parameter optimization and meta-learning. However, so far, implicit differentiation remained difficult to use for practitioners, as it often required case-by-case tedious mathematical derivations and implementations. In this paper, we propose automatic implicit differentiation, an efficient and modular approach for implicit differentiation of optimization problems. In our approach, the user defines directly in Python a function F capturing the optimality conditions of the problem to be differentiated. Once this is done, we leverage autodiff of F and the implicit function theorem to automatically differentiate the optimization problem. Our approach thus combines the benefits of implicit differentiation and autodiff. It is efficient as it can be added on top of any state-of-the-art solver and modular as the optimality condition specification is decoupled from the implicit differentiation mechanism. We show that seemingly simple principles allow to recover many existing implicit differentiation methods and create new ones easily. We demonstrate the ease of formulating and solving bi-level optimization problems using our framework. We also showcase an application to the sensitivity analysis of molecular dynamics.
Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion
Normalization layers are one of the key building blocks for deep neural networks. Several theoretical studies have shown that batch normalization improves the signal propagation, by avoiding the representations from becoming collinear across the layers. However, results on mean-field theory of batch normalization also conclude that this benefit comes at the expense of exploding gradients in depth. Motivated by these two aspects of batch normalization, in this study we pose the following question: "Can a batch-normalized network keep the optimal signal propagation properties, but avoid exploding gradients?" We answer this question in the affirmative by giving a particular construction of an Multi-Layer Perceptron (MLP) with linear activations and batch-normalization that provably has bounded gradients at any depth. Based on Weingarten calculus, we develop a rigorous and non-asymptotic theory for this constructed MLP that gives a precise characterization of forward signal propagation, while proving that gradients remain bounded for linearly independent input samples, which holds in most practical settings. Inspired by our theory, we also design an activation shaping scheme that empirically achieves the same properties for certain non-linear activations.
Automatic Functional Differentiation in JAX
We extend JAX with the capability to automatically differentiate higher-order functions (functionals and operators). By representing functions as a generalization of arrays, we seamlessly use JAX's existing primitive system to implement higher-order functions. We present a set of primitive operators that serve as foundational building blocks for constructing several key types of functionals. For every introduced primitive operator, we derive and implement both linearization and transposition rules, aligning with JAX's internal protocols for forward and reverse mode automatic differentiation. This enhancement allows for functional differentiation in the same syntax traditionally use for functions. The resulting functional gradients are themselves functions ready to be invoked in python. We showcase this tool's efficacy and simplicity through applications where functional derivatives are indispensable. The source code of this work is released at https://github.com/sail-sg/autofd .
NSF: Neural Surface Fields for Human Modeling from Monocular Depth
Obtaining personalized 3D animatable avatars from a monocular camera has several real world applications in gaming, virtual try-on, animation, and VR/XR, etc. However, it is very challenging to model dynamic and fine-grained clothing deformations from such sparse data. Existing methods for modeling 3D humans from depth data have limitations in terms of computational efficiency, mesh coherency, and flexibility in resolution and topology. For instance, reconstructing shapes using implicit functions and extracting explicit meshes per frame is computationally expensive and cannot ensure coherent meshes across frames. Moreover, predicting per-vertex deformations on a pre-designed human template with a discrete surface lacks flexibility in resolution and topology. To overcome these limitations, we propose a novel method `\keyfeature: Neural Surface Fields' for modeling 3D clothed humans from monocular depth. NSF defines a neural field solely on the base surface which models a continuous and flexible displacement field. NSF can be adapted to the base surface with different resolution and topology without retraining at inference time. Compared to existing approaches, our method eliminates the expensive per-frame surface extraction while maintaining mesh coherency, and is capable of reconstructing meshes with arbitrary resolution without retraining. To foster research in this direction, we release our code in project page at: https://yuxuan-xue.com/nsf.
The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We implement a linear regression-based emulator, akin to pattern scaling, and find that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved surface-level climate variables. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. We identify that this outcome is a result of high levels of internal variability in the benchmark targets. To address internal variability, we update the benchmark targets with ensemble averages from the MPI-ESM1.2-LR model that contain 50 instead of 3 climate simulations per emission pathway. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based model for emulating precipitation. We publish our code, data, and an interactive tutorial at github.com/blutjens/climate-emulator.
Boost Video Frame Interpolation via Motion Adaptation
Video frame interpolation (VFI) is a challenging task that aims to generate intermediate frames between two consecutive frames in a video. Existing learning-based VFI methods have achieved great success, but they still suffer from limited generalization ability due to the limited motion distribution of training datasets. In this paper, we propose a novel optimization-based VFI method that can adapt to unseen motions at test time. Our method is based on a cycle-consistency adaptation strategy that leverages the motion characteristics among video frames. We also introduce a lightweight adapter that can be inserted into the motion estimation module of existing pre-trained VFI models to improve the efficiency of adaptation. Extensive experiments on various benchmarks demonstrate that our method can boost the performance of two-frame VFI models, outperforming the existing state-of-the-art methods, even those that use extra input.
PixelSynth: Generating a 3D-Consistent Experience from a Single Image
Recent advancements in differentiable rendering and 3D reasoning have driven exciting results in novel view synthesis from a single image. Despite realistic results, methods are limited to relatively small view change. In order to synthesize immersive scenes, models must also be able to extrapolate. We present an approach that fuses 3D reasoning with autoregressive modeling to outpaint large view changes in a 3D-consistent manner, enabling scene synthesis. We demonstrate considerable improvement in single image large-angle view synthesis results compared to a variety of methods and possible variants across simulated and real datasets. In addition, we show increased 3D consistency compared to alternative accumulation methods. Project website: https://crockwell.github.io/pixelsynth/
Nonlinear Advantage: Trained Networks Might Not Be As Complex as You Think
We perform an empirical study of the behaviour of deep networks when fully linearizing some of its feature channels through a sparsity prior on the overall number of nonlinear units in the network. In experiments on image classification and machine translation tasks, we investigate how much we can simplify the network function towards linearity before performance collapses. First, we observe a significant performance gap when reducing nonlinearity in the network function early on as opposed to late in training, in-line with recent observations on the time-evolution of the data-dependent NTK. Second, we find that after training, we are able to linearize a significant number of nonlinear units while maintaining a high performance, indicating that much of a network's expressivity remains unused but helps gradient descent in early stages of training. To characterize the depth of the resulting partially linearized network, we introduce a measure called average path length, representing the average number of active nonlinearities encountered along a path in the network graph. Under sparsity pressure, we find that the remaining nonlinear units organize into distinct structures, forming core-networks of near constant effective depth and width, which in turn depend on task difficulty.
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.
Generalized Kernel Thinning
The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Mat\'ern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in 100 dimensions and when compressing challenging differential equation posteriors.
Tighter Information-Theoretic Generalization Bounds from Supersamples
In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
On the Optimality of Misspecified Kernel Ridge Regression
In the misspecified kernel ridge regression problem, researchers usually assume the underground true function f_{rho}^{*} in [H]^{s}, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) H for some sin (0,1). The existing minimax optimal results require |f_{rho}^{*}|_{L^{infty}}<infty which implicitly requires s > alpha_{0} where alpha_{0}in (0,1) is the embedding index, a constant depending on H. Whether the KRR is optimal for all sin (0,1) is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any sin (0,1) when the H is a Sobolev RKHS.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters
Recent work has shown that forward- and reverse- mode automatic differentiation (AD) over the reals is almost always correct in a mathematically precise sense. However, actual programs work with machine-representable numbers (e.g., floating-point numbers), not reals. In this paper, we study the correctness of AD when the parameter space of a neural network consists solely of machine-representable numbers. In particular, we analyze two sets of parameters on which AD can be incorrect: the incorrect set on which the network is differentiable but AD does not compute its derivative, and the non-differentiable set on which the network is non-differentiable. For a neural network with bias parameters, we first prove that the incorrect set is always empty. We then prove a tight bound on the size of the non-differentiable set, which is linear in the number of non-differentiabilities in activation functions, and give a simple necessary and sufficient condition for a parameter to be in this set. We further prove that AD always computes a Clarke subderivative even on the non-differentiable set. We also extend these results to neural networks possibly without bias parameters.
PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations
The approximation of Partial Differential Equations (PDEs) using neural networks has seen significant advancements through Physics-Informed Neural Networks (PINNs). Despite their straightforward optimization framework and flexibility in implementing various PDEs, PINNs often suffer from limited accuracy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to effectively learn high-frequency and non-linear components. Recently, parametric mesh representations in combination with neural networks have been investigated as a promising approach to eliminate the inductive biases of neural networks. However, they usually require very high-resolution grids and a large number of collocation points to achieve high accuracy while avoiding overfitting issues. In addition, the fixed positions of the mesh parameters restrict their flexibility, making it challenging to accurately approximate complex PDEs. To overcome these limitations, we propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network. Our approach uses trainable parameters for the mean and variance of each Gaussian, allowing for dynamic adjustment of their positions and shapes during training. This adaptability enables our model to optimally approximate PDE solutions, unlike models with fixed parameter positions. Furthermore, the proposed approach maintains the same optimization framework used in PINNs, allowing us to benefit from their excellent properties. Experimental results show the competitive performance of our model across various PDEs, demonstrating its potential as a robust tool for solving complex PDEs. Our project page is available at https://namgyukang.github.io/Physics-Informed-Gaussians/
SignalTrain: Profiling Audio Compressors with Deep Neural Networks
In this work we present a data-driven approach for predicting the behavior of (i.e., profiling) a given non-linear audio signal processing effect (henceforth "audio effect"). Our objective is to learn a mapping function that maps the unprocessed audio to the processed by the audio effect to be profiled, using time-domain samples. To that aim, we employ a deep auto-encoder model that is conditioned on both time-domain samples and the control parameters of the target audio effect. As a test-case study, we focus on the offline profiling of two dynamic range compression audio effects, one software-based and the other analog. Compressors were chosen because they are a widely used and important set of effects and because their parameterized nonlinear time-dependent nature makes them a challenging problem for a system aiming to profile "general" audio effects. Results from our experimental procedure show that the primary functional and auditory characteristics of the compressors can be captured, however there is still sufficient audible noise to merit further investigation before such methods are applied to real-world audio processing workflows.
Non-Exchangeable Conformal Risk Control
Split conformal prediction has recently sparked great interest due to its ability to provide formally guaranteed uncertainty sets or intervals for predictions made by black-box neural models, ensuring a predefined probability of containing the actual ground truth. While the original formulation assumes data exchangeability, some extensions handle non-exchangeable data, which is often the case in many real-world scenarios. In parallel, some progress has been made in conformal methods that provide statistical guarantees for a broader range of objectives, such as bounding the best F_1-score or minimizing the false negative rate in expectation. In this paper, we leverage and extend these two lines of work by proposing non-exchangeable conformal risk control, which allows controlling the expected value of any monotone loss function when the data is not exchangeable. Our framework is flexible, makes very few assumptions, and allows weighting the data based on its relevance for a given test example; a careful choice of weights may result on tighter bounds, making our framework useful in the presence of change points, time series, or other forms of distribution drift. Experiments with both synthetic and real world data show the usefulness of our method.
General Covariance Data Augmentation for Neural PDE Solvers
The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.
SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes
Existing methods for the 4D reconstruction of general, non-rigidly deforming objects focus on novel-view synthesis and neglect correspondences. However, time consistency enables advanced downstream tasks like 3D editing, motion analysis, or virtual-asset creation. We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner. Our dynamic-NeRF method takes multi-view RGB videos and background images from static cameras with known camera parameters as input. It then reconstructs the deformations of an estimated canonical model of the geometry and appearance in an online fashion. Since this canonical model is time-invariant, we obtain correspondences even for long-term, long-range motions. We employ neural scene representations to parametrize the components of our method. Like prior dynamic-NeRF methods, we use a backwards deformation model. We find non-trivial adaptations of this model necessary to handle larger motions: We decompose the deformations into a strongly regularized coarse component and a weakly regularized fine component, where the coarse component also extends the deformation field into the space surrounding the object, which enables tracking over time. We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
Learning Hierarchical Polynomials with Three-Layer Neural Networks
We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form h = g circ p where p : R^d rightarrow R is a degree k polynomial and g: R rightarrow R is a degree q polynomial. This function class generalizes the single-index model, which corresponds to k=1, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree k polynomials p, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target h up to vanishing test error in mathcal{O}(d^k) samples and polynomial time. This is a strict improvement over kernel methods, which require widetilde Theta(d^{kq}) samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of p being a quadratic. When p is indeed a quadratic, we achieve the information-theoretically optimal sample complexity mathcal{O}(d^2), which is an improvement over prior work~nichani2023provable requiring a sample size of widetildeTheta(d^4). Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature p with mathcal{O}(d^k) samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows
Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new Spatiotemporal Fourier Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues. This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations. Specifically, in the learning problems for the turbulent flow modeling by the Navier-Stokes Equations (NSE), the proposed architecture initiates the training with a few epochs for SFNO, concluding with the freezing of most model parameters. Then, the last linear spectral convolution layer is fine-tuned without the frequency truncation. The optimization uses a negative Sobolev norm for the first time as the loss in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is almost exact thanks to the Parseval identity. This design allows the neural operators to effectively tackle low-frequency errors while the relief of the de-aliasing filter addresses high-frequency errors. Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.
Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation
We show how to transform a non-differentiable rasterizer into a differentiable one with minimal engineering efforts and no external dependencies (no Pytorch/Tensorflow). We rely on Stochastic Gradient Estimation, a technique that consists of rasterizing after randomly perturbing the scene's parameters such that their gradient can be stochastically estimated and descended. This method is simple and robust but does not scale in dimensionality (number of scene parameters). Our insight is that the number of parameters contributing to a given rasterized pixel is bounded. Estimating and averaging gradients on a per-pixel basis hence bounds the dimensionality of the underlying optimization problem and makes the method scalable. Furthermore, it is simple to track per-pixel contributing parameters by rasterizing ID- and UV-buffers, which are trivial additions to a rasterization engine if not already available. With these minor modifications, we obtain an in-engine optimizer for 3D assets with millions of geometry and texture parameters.
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
In deep learning, often the training process finds an interpolator (a solution with 0 training loss), but the test loss is still low. This phenomenon, known as benign overfitting, is a major mystery that received a lot of recent attention. One common mechanism for benign overfitting is implicit regularization, where the training process leads to additional properties for the interpolator, often characterized by minimizing certain norms. However, even for a simple sparse linear regression problem y = beta^{*top} x +xi with sparse beta^*, neither minimum ell_1 or ell_2 norm interpolator gives the optimal test loss. In this work, we give a different parametrization of the model which leads to a new implicit regularization effect that combines the benefit of ell_1 and ell_2 interpolators. We show that training our new model via gradient descent leads to an interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics and provides another example of implicit regularization effect that goes beyond norm minimization.
Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems
We investigate a primal-dual (PD) method for the saddle point problem (SPP) that uses a linear approximation of the primal function instead of the standard proximal step, resulting in a linearized PD (LPD) method. For convex-strongly concave SPP, we observe that the LPD method has a suboptimal dependence on the Lipschitz constant of the primal function. To fix this issue, we combine features of Accelerated Gradient Descent with the LPD method resulting in a single-loop Accelerated Linearized Primal-Dual (ALPD) method. ALPD method achieves the optimal gradient complexity when the SPP has a semi-linear coupling function. We also present an inexact ALPD method for SPPs with a general nonlinear coupling function that maintains the optimal gradient evaluations of the primal parts and significantly improves the gradient evaluations of the coupling term compared to the ALPD method. We verify our findings with numerical experiments.
Unification of popular artificial neural network activation functions
We present a unified representation of the most popular neural network activation functions. Adopting Mittag-Leffler functions of fractional calculus, we propose a flexible and compact functional form that is able to interpolate between various activation functions and mitigate common problems in training neural networks such as vanishing and exploding gradients. The presented gated representation extends the scope of fixed-shape activation functions to their adaptive counterparts whose shape can be learnt from the training data. The derivatives of the proposed functional form can also be expressed in terms of Mittag-Leffler functions making it a suitable candidate for gradient-based backpropagation algorithms. By training multiple neural networks of different complexities on various datasets with different sizes, we demonstrate that adopting a unified gated representation of activation functions offers a promising and affordable alternative to individual built-in implementations of activation functions in conventional machine learning frameworks.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
We present rectified flow, a surprisingly simple approach to learning (neural) ordinary differential equation (ODE) models to transport between two empirically observed distributions \pi_0 and \pi_1, hence providing a unified solution to generative modeling and domain transfer, among various other tasks involving distribution transport. The idea of rectified flow is to learn the ODE to follow the straight paths connecting the points drawn from \pi_0 and \pi_1 as much as possible. This is achieved by solving a straightforward nonlinear least squares optimization problem, which can be easily scaled to large models without introducing extra parameters beyond standard supervised learning. The straight paths are special and preferred because they are the shortest paths between two points, and can be simulated exactly without time discretization and hence yield computationally efficient models. We show that the procedure of learning a rectified flow from data, called rectification, turns an arbitrary coupling of \pi_0 and \pi_1 to a new deterministic coupling with provably non-increasing convex transport costs. In addition, recursively applying rectification allows us to obtain a sequence of flows with increasingly straight paths, which can be simulated accurately with coarse time discretization in the inference phase. In empirical studies, we show that rectified flow performs superbly on image generation, image-to-image translation, and domain adaptation. In particular, on image generation and translation, our method yields nearly straight flows that give high quality results even with a single Euler discretization step.
Coordinate Descent Methods for Fractional Minimization
We consider a class of structured fractional minimization problems, in which the numerator part of the objective is the sum of a differentiable convex function and a convex non-smooth function, while the denominator part is a convex or concave function. This problem is difficult to solve since it is non-convex. By exploiting the structure of the problem, we propose two Coordinate Descent (CD) methods for solving this problem. The proposed methods iteratively solve a one-dimensional subproblem globally, and they are guaranteed to converge to coordinate-wise stationary points. In the case of a convex denominator, under a weak locally bounded non-convexity condition, we prove that the optimality of coordinate-wise stationary point is stronger than that of the standard critical point and directional point. Under additional suitable conditions, CD methods converge Q-linearly to coordinate-wise stationary points. In the case of a concave denominator, we show that any critical point is a global minimum, and CD methods converge to the global minimum with a sublinear convergence rate. We demonstrate the applicability of the proposed methods to some machine learning and signal processing models. Our experiments on real-world data have shown that our method significantly and consistently outperforms existing methods in terms of accuracy.
Kernelised Normalising Flows
Normalising Flows are non-parametric statistical models characterised by their dual capabilities of density estimation and generation. This duality requires an inherently invertible architecture. However, the requirement of invertibility imposes constraints on their expressiveness, necessitating a large number of parameters and innovative architectural designs to achieve good results. Whilst flow-based models predominantly rely on neural-network-based transformations for expressive designs, alternative transformation methods have received limited attention. In this work, we present Ferumal flow, a novel kernelised normalising flow paradigm that integrates kernels into the framework. Our results demonstrate that a kernelised flow can yield competitive or superior results compared to neural network-based flows whilst maintaining parameter efficiency. Kernelised flows excel especially in the low-data regime, enabling flexible non-parametric density estimation in applications with sparse data availability.
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
Complex-valued neural networks for machine learning on non-stationary physical data
Deep learning has become an area of interest in most scientific areas, including physical sciences. Modern networks apply real-valued transformations on the data. Particularly, convolutions in convolutional neural networks discard phase information entirely. Many deterministic signals, such as seismic data or electrical signals, contain significant information in the phase of the signal. We explore complex-valued deep convolutional networks to leverage non-linear feature maps. Seismic data commonly has a lowcut filter applied, to attenuate noise from ocean waves and similar long wavelength contributions. Discarding the phase information leads to low-frequency aliasing analogous to the Nyquist-Shannon theorem for high frequencies. In non-stationary data, the phase content can stabilize training and improve the generalizability of neural networks. While it has been shown that phase content can be restored in deep neural networks, we show how including phase information in feature maps improves both training and inference from deterministic physical data. Furthermore, we show that the reduction of parameters in a complex network outperforms larger real-valued networks.
Sequential Predictive Conformal Inference for Time Series
We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series), called the sequential predictive conformal inference (SPCI). We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable. The main idea is to adaptively re-estimate the conditional quantile of non-conformity scores (e.g., prediction residuals), upon exploiting the temporal dependence among them. More precisely, we cast the problem of conformal prediction interval as predicting the quantile of a future residual, given a user-specified point prediction algorithm. Theoretically, we establish asymptotic valid conditional coverage upon extending consistency analyses in quantile regression. Using simulation and real-data experiments, we demonstrate a significant reduction in interval width of SPCI compared to other existing methods under the desired empirical coverage.
Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field.
Single-Layer Learnable Activation for Implicit Neural Representation (SL^{2}A-INR)
Implicit Neural Representation (INR), leveraging a neural network to transform coordinate input into corresponding attributes, has recently driven significant advances in several vision-related domains. However, the performance of INR is heavily influenced by the choice of the nonlinear activation function used in its multilayer perceptron (MLP) architecture. Multiple nonlinearities have been investigated; yet, current INRs face limitations in capturing high-frequency components, diverse signal types, and handling inverse problems. We have identified that these problems can be greatly alleviated by introducing a paradigm shift in INRs. We find that an architecture with learnable activations in initial layers can represent fine details in the underlying signals. Specifically, we propose SL^{2}A-INR, a hybrid network for INR with a single-layer learnable activation function, prompting the effectiveness of traditional ReLU-based MLPs. Our method performs superior across diverse tasks, including image representation, 3D shape reconstructions, inpainting, single image super-resolution, CT reconstruction, and novel view synthesis. Through comprehensive experiments, SL^{2}A-INR sets new benchmarks in accuracy, quality, and convergence rates for INR.
LESnets (Large-Eddy Simulation nets): Physics-informed neural operator for large-eddy simulation of turbulence
Acquisition of large datasets for three-dimensional (3D) partial differential equations are usually very expensive. Physics-informed neural operator (PINO) eliminates the high costs associated with generation of training datasets, and shows great potential in a variety of partial differential equations. In this work, we employ physics-informed neural operator, encoding the large-eddy simulation (LES) equations directly into the neural operator for simulating three-dimensional incompressible turbulent flows. We develop the LESnets (Large-Eddy Simulation nets) by adding large-eddy simulation equations to two different data-driven models, including Fourier neural operator (FNO) and implicit Fourier neural operator (IFNO) without using label data. Notably, by leveraging only PDE constraints to learn the spatio-temporal dynamics problem, LESnets retains the computational efficiency of data-driven approaches while obviating the necessity for data. Meanwhile, using large-eddy simulation equations as PDE constraints makes it possible to efficiently predict complex turbulence at coarse grids. We investigate the performance of the LESnets with two standard three-dimensional turbulent flows: decaying homogeneous isotropic turbulence and temporally evolving turbulent mixing layer. In the numerical experiments, the LESnets model shows a similar or even better accuracy as compared to traditional large-eddy simulation and data-driven models of FNO and IFNO. Moreover, the well-trained LESnets is significantly faster than traditional LES, and has a similar efficiency as the data-driven FNO and IFNO models. Thus, physics-informed neural operators have a strong potential for 3D nonlinear engineering applications.
Feature Learning in Infinite-Width Neural Networks
As its width tends to infinity, a deep neural network's behavior under gradient descent can become simplified and predictable (e.g. given by the Neural Tangent Kernel (NTK)), if it is parametrized appropriately (e.g. the NTK parametrization). However, we show that the standard and NTK parametrizations of a neural network do not admit infinite-width limits that can learn features, which is crucial for pretraining and transfer learning such as with BERT. We propose simple modifications to the standard parametrization to allow for feature learning in the limit. Using the *Tensor Programs* technique, we derive explicit formulas for such limits. On Word2Vec and few-shot learning on Omniglot via MAML, two canonical tasks that rely crucially on feature learning, we compute these limits exactly. We find that they outperform both NTK baselines and finite-width networks, with the latter approaching the infinite-width feature learning performance as width increases. More generally, we classify a natural space of neural network parametrizations that generalizes standard, NTK, and Mean Field parametrizations. We show 1) any parametrization in this space either admits feature learning or has an infinite-width training dynamics given by kernel gradient descent, but not both; 2) any such infinite-width limit can be computed using the Tensor Programs technique. Code for our experiments can be found at github.com/edwardjhu/TP4.
Curvature-Aware Training for Coordinate Networks
Coordinate networks are widely used in computer vision due to their ability to represent signals as compressed, continuous entities. However, training these networks with first-order optimizers can be slow, hindering their use in real-time applications. Recent works have opted for shallow voxel-based representations to achieve faster training, but this sacrifices memory efficiency. This work proposes a solution that leverages second-order optimization methods to significantly reduce training times for coordinate networks while maintaining their compressibility. Experiments demonstrate the effectiveness of this approach on various signal modalities, such as audio, images, videos, shape reconstruction, and neural radiance fields.
Online Platt Scaling with Calibeating
We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method.
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.
Feature Programming for Multivariate Time Series Prediction
We introduce the concept of programmable feature engineering for time series modeling and propose a feature programming framework. This framework generates large amounts of predictive features for noisy multivariate time series while allowing users to incorporate their inductive bias with minimal effort. The key motivation of our framework is to view any multivariate time series as a cumulative sum of fine-grained trajectory increments, with each increment governed by a novel spin-gas dynamical Ising model. This fine-grained perspective motivates the development of a parsimonious set of operators that summarize multivariate time series in an abstract fashion, serving as the foundation for large-scale automated feature engineering. Numerically, we validate the efficacy of our method on several synthetic and real-world noisy time series datasets.
Controllable Neural Symbolic Regression
In symbolic regression, the goal is to find an analytical expression that accurately fits experimental data with the minimal use of mathematical symbols such as operators, variables, and constants. However, the combinatorial space of possible expressions can make it challenging for traditional evolutionary algorithms to find the correct expression in a reasonable amount of time. To address this issue, Neural Symbolic Regression (NSR) algorithms have been developed that can quickly identify patterns in the data and generate analytical expressions. However, these methods, in their current form, lack the capability to incorporate user-defined prior knowledge, which is often required in natural sciences and engineering fields. To overcome this limitation, we propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH) that enables the explicit incorporation of assumptions about the expected structure of the ground-truth expression into the prediction process. Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy while also providing control over the predicted expression structure.
Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation
Global climate models typically operate at a grid resolution of hundreds of kilometers and fail to resolve atmospheric mesoscale processes, e.g., clouds, precipitation, and gravity waves (GWs). Model representation of these processes and their sources is essential to the global circulation and planetary energy budget, but subgrid scale contributions from these processes are often only approximately represented in models using parameterizations. These parameterizations are subject to approximations and idealizations, which limit their capability and accuracy. The most drastic of these approximations is the "single-column approximation" which completely neglects the horizontal evolution of these processes, resulting in key biases in current climate models. With a focus on atmospheric GWs, we present the first-ever global simulation of atmospheric GW fluxes using machine learning (ML) models trained on the WINDSET dataset to emulate global GW emulation in the atmosphere, as an alternative to traditional single-column parameterizations. Using an Attention U-Net-based architecture trained on globally resolved GW momentum fluxes, we illustrate the importance and effectiveness of global nonlocality, when simulating GWs using data-driven schemes.
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Backpropagation, the cornerstone of deep learning, is limited to computing gradients for continuous variables. This limitation poses challenges for problems involving discrete latent variables. To address this issue, we propose a novel approach to approximate the gradient of parameters involved in generating discrete latent variables. First, we examine the widely used Straight-Through (ST) heuristic and demonstrate that it works as a first-order approximation of the gradient. Guided by our findings, we propose ReinMax, which achieves second-order accuracy by integrating Heun's method, a second-order numerical method for solving ODEs. ReinMax does not require Hessian or other second-order derivatives, thus having negligible computation overheads. Extensive experimental results on various tasks demonstrate the superiority of ReinMax over the state of the art. Implementations are released at https://github.com/microsoft/ReinMax.
Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction
We present a super-fast convergence approach to reconstructing the per-scene radiance field from a set of images that capture the scene with known poses. This task, which is often applied to novel view synthesis, is recently revolutionized by Neural Radiance Field (NeRF) for its state-of-the-art quality and flexibility. However, NeRF and its variants require a lengthy training time ranging from hours to days for a single scene. In contrast, our approach achieves NeRF-comparable quality and converges rapidly from scratch in less than 15 minutes with a single GPU. We adopt a representation consisting of a density voxel grid for scene geometry and a feature voxel grid with a shallow network for complex view-dependent appearance. Modeling with explicit and discretized volume representations is not new, but we propose two simple yet non-trivial techniques that contribute to fast convergence speed and high-quality output. First, we introduce the post-activation interpolation on voxel density, which is capable of producing sharp surfaces in lower grid resolution. Second, direct voxel density optimization is prone to suboptimal geometry solutions, so we robustify the optimization process by imposing several priors. Finally, evaluation on five inward-facing benchmarks shows that our method matches, if not surpasses, NeRF's quality, yet it only takes about 15 minutes to train from scratch for a new scene.
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks
As an alternative to classical numerical solvers for partial differential equations (PDEs) subject to boundary value constraints, there has been a surge of interest in investigating neural networks that can solve such problems efficiently. In this work, we design a general solution operator for two different time-independent PDEs using graph neural networks (GNNs) and spectral graph convolutions. We train the networks on simulated data from a finite elements solver on a variety of shapes and inhomogeneities. In contrast to previous works, we focus on the ability of the trained operator to generalize to previously unseen scenarios. Specifically, we test generalization to meshes with different shapes and superposition of solutions for a different number of inhomogeneities. We find that training on a diverse dataset with lots of variation in the finite element meshes is a key ingredient for achieving good generalization results in all cases. With this, we believe that GNNs can be used to learn solution operators that generalize over a range of properties and produce solutions much faster than a generic solver. Our dataset, which we make publicly available, can be used and extended to verify the robustness of these models under varying conditions.
Backprop as Functor: A compositional perspective on supervised learning
A supervised learning algorithm searches over a set of functions A to B parametrised by a space P to find the best approximation to some ideal function fcolon A to B. It does this by taking examples (a,f(a)) in Atimes B, and updating the parameter according to some rule. We define a category where these update rules may be composed, and show that gradient descent---with respect to a fixed step size and an error function satisfying a certain property---defines a monoidal functor from a category of parametrised functions to this category of update rules. This provides a structural perspective on backpropagation, as well as a broad generalisation of neural networks.
Iterative Superquadric Recomposition of 3D Objects from Multiple Views
Humans are good at recomposing novel objects, i.e. they can identify commonalities between unknown objects from general structure to finer detail, an ability difficult to replicate by machines. We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views without training a model that uses 3D supervision. To achieve this, we optimize the superquadric parameters that compose a specific instance of the object, comparing its rendered 3D view and 2D image silhouette. Our ISCO framework iteratively adds new superquadrics wherever the reconstruction error is high, abstracting first coarse regions and then finer details of the target object. With this simple coarse-to-fine inductive bias, ISCO provides consistent superquadrics for related object parts, despite not having any semantic supervision. Since ISCO does not train any neural network, it is also inherently robust to out-of-distribution objects. Experiments show that, compared to recent single instance superquadrics reconstruction approaches, ISCO provides consistently more accurate 3D reconstructions, even from images in the wild. Code available at https://github.com/ExplainableML/ISCO .
Learning large scale industrial physics simulations
In an industrial group like Safran, numerical simulations of physical phenomena are integral to most design processes. At Safran's corporate research center, we enhance these processes by developing fast and reliable surrogate models for various physics. We focus here on two technologies developed in recent years. The first is a physical reduced-order modeling method for non-linear structural mechanics and thermal analysis, used for calculating the lifespan of high-pressure turbine blades and performing heat analysis of high-pressure compressors. The second technology involves learning physics simulations with non-parameterized geometrical variability using classical machine learning tools, such as Gaussian process regression. Finally, we present our contributions to the open-source and open-data community.
GLU Variants Improve Transformer
Gated Linear Units (arXiv:1612.08083) consist of the component-wise product of two linear projections, one of which is first passed through a sigmoid function. Variations on GLU are possible, using different nonlinear (or even linear) functions in place of sigmoid. We test these variants in the feed-forward sublayers of the Transformer (arXiv:1706.03762) sequence-to-sequence model, and find that some of them yield quality improvements over the typically-used ReLU or GELU activations.
Generalized Denoising Auto-Encoders as Generative Models
Recent work has shown how denoising and contractive autoencoders implicitly capture the structure of the data-generating density, in the case where the corruption noise is Gaussian, the reconstruction error is the squared error, and the data is continuous-valued. This has led to various proposals for sampling from this implicitly learned density function, using Langevin and Metropolis-Hastings MCMC. However, it remained unclear how to connect the training procedure of regularized auto-encoders to the implicit estimation of the underlying data-generating distribution when the data are discrete, or using other forms of corruption process and reconstruction errors. Another issue is the mathematical justification which is only valid in the limit of small corruption noise. We propose here a different attack on the problem, which deals with all these issues: arbitrary (but noisy enough) corruption, arbitrary reconstruction loss (seen as a log-likelihood), handling both discrete and continuous-valued variables, and removing the bias due to non-infinitesimal corruption noise (or non-infinitesimal contractive penalty).
Tunable Convolutions with Parametric Multi-Loss Optimization
Behavior of neural networks is irremediably determined by the specific loss and data used during training. However it is often desirable to tune the model at inference time based on external factors such as preferences of the user or dynamic characteristics of the data. This is especially important to balance the perception-distortion trade-off of ill-posed image-to-image translation tasks. In this work, we propose to optimize a parametric tunable convolutional layer, which includes a number of different kernels, using a parametric multi-loss, which includes an equal number of objectives. Our key insight is to use a shared set of parameters to dynamically interpolate both the objectives and the kernels. During training, these parameters are sampled at random to explicitly optimize all possible combinations of objectives and consequently disentangle their effect into the corresponding kernels. During inference, these parameters become interactive inputs of the model hence enabling reliable and consistent control over the model behavior. Extensive experimental results demonstrate that our tunable convolutions effectively work as a drop-in replacement for traditional convolutions in existing neural networks at virtually no extra computational cost, outperforming state-of-the-art control strategies in a wide range of applications; including image denoising, deblurring, super-resolution, and style transfer.
EventSplat: 3D Gaussian Splatting from Moving Event Cameras for Real-time Rendering
We introduce a method for using event camera data in novel view synthesis via Gaussian Splatting. Event cameras offer exceptional temporal resolution and a high dynamic range. Leveraging these capabilities allows us to effectively address the novel view synthesis challenge in the presence of fast camera motion. For initialization of the optimization process, our approach uses prior knowledge encoded in an event-to-video model. We also use spline interpolation for obtaining high quality poses along the event camera trajectory. This enhances the reconstruction quality from fast-moving cameras while overcoming the computational limitations traditionally associated with event-based Neural Radiance Field (NeRF) methods. Our experimental evaluation demonstrates that our results achieve higher visual fidelity and better performance than existing event-based NeRF approaches while being an order of magnitude faster to render.
Temporal Residual Jacobians For Rig-free Motion Transfer
We introduce Temporal Residual Jacobians as a novel representation to enable data-driven motion transfer. Our approach does not assume access to any rigging or intermediate shape keyframes, produces geometrically and temporally consistent motions, and can be used to transfer long motion sequences. Central to our approach are two coupled neural networks that individually predict local geometric and temporal changes that are subsequently integrated, spatially and temporally, to produce the final animated meshes. The two networks are jointly trained, complement each other in producing spatial and temporal signals, and are supervised directly with 3D positional information. During inference, in the absence of keyframes, our method essentially solves a motion extrapolation problem. We test our setup on diverse meshes (synthetic and scanned shapes) to demonstrate its superiority in generating realistic and natural-looking animations on unseen body shapes against SoTA alternatives. Supplemental video and code are available at https://temporaljacobians.github.io/ .
An error indicator-based adaptive reduced order model for nonlinear structural mechanics -- application to high-pressure turbine blades
The industrial application motivating this work is the fatigue computation of aircraft engines' high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic behavior laws, for which the parameters depend on the temperature. For this application, the temperature loading is not accurately known and can reach values relatively close to the creep temperature: important nonlinear effects occur and the solution strongly depends on the used thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution to the temperature makes {the classical unenriched proper orthogonal decomposition method} fail. In this work, we propose a new error indicator, quantifying the error made by the reduced order model in computational complexity independent of the size of the high-fidelity reference model. In our framework, when the {error indicator} becomes larger than a given tolerance, the reduced order model is updated using one time step solution of the high-fidelity reference model. The approach is illustrated on a series of academic test cases and applied on a setting of industrial complexity involving 5 million degrees of freedom, where the whole procedure is computed in parallel with distributed memory.
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
When solving inverse problems, it is increasingly popular to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. To address this issue, we propose Ensemble Kalman Diffusion Guidance (EnKG) for diffusion models, a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of our method across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model.
Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem
Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.
Gaussian Frosting: Editable Complex Radiance Fields with Real-Time Rendering
We propose Gaussian Frosting, a novel mesh-based representation for high-quality rendering and editing of complex 3D effects in real-time. Our approach builds on the recent 3D Gaussian Splatting framework, which optimizes a set of 3D Gaussians to approximate a radiance field from images. We propose first extracting a base mesh from Gaussians during optimization, then building and refining an adaptive layer of Gaussians with a variable thickness around the mesh to better capture the fine details and volumetric effects near the surface, such as hair or grass. We call this layer Gaussian Frosting, as it resembles a coating of frosting on a cake. The fuzzier the material, the thicker the frosting. We also introduce a parameterization of the Gaussians to enforce them to stay inside the frosting layer and automatically adjust their parameters when deforming, rescaling, editing or animating the mesh. Our representation allows for efficient rendering using Gaussian splatting, as well as editing and animation by modifying the base mesh. We demonstrate the effectiveness of our method on various synthetic and real scenes, and show that it outperforms existing surface-based approaches. We will release our code and a web-based viewer as additional contributions. Our project page is the following: https://anttwo.github.io/frosting/
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.
Model Collapse Demystified: The Case of Regression
In the era of proliferation of large language and image generation models, the phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e the model collapses. In this work, we study this phenomenon in the setting of high-dimensional regression and obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
Deep Learning for Functional Data Analysis with Adaptive Basis Layers
Despite their widespread success, the application of deep neural networks to functional data remains scarce today. The infinite dimensionality of functional data means standard learning algorithms can be applied only after appropriate dimension reduction, typically achieved via basis expansions. Currently, these bases are chosen a priori without the information for the task at hand and thus may not be effective for the designated task. We instead propose to adaptively learn these bases in an end-to-end fashion. We introduce neural networks that employ a new Basis Layer whose hidden units are each basis functions themselves implemented as a micro neural network. Our architecture learns to apply parsimonious dimension reduction to functional inputs that focuses only on information relevant to the target rather than irrelevant variation in the input function. Across numerous classification/regression tasks with functional data, our method empirically outperforms other types of neural networks, and we prove that our approach is statistically consistent with low generalization error. Code is available at: https://github.com/jwyyy/AdaFNN.
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
Fourier Neural Operators (FNOs) have proven to be an efficient and effective method for resolution-independent operator learning in a broad variety of application areas across scientific machine learning. A key reason for their success is their ability to accurately model long-range dependencies in spatio-temporal data by learning global convolutions in a computationally efficient manner. To this end, FNOs rely on the discrete Fourier transform (DFT), however, DFTs cause visual and spectral artifacts as well as pronounced dissipation when learning operators in spherical coordinates since they incorrectly assume a flat geometry. To overcome this limitation, we generalize FNOs on the sphere, introducing Spherical FNOs (SFNOs) for learning operators on spherical geometries. We apply SFNOs to forecasting atmospheric dynamics, and demonstrate stable auto\-regressive rollouts for a year of simulated time (1,460 steps), while retaining physically plausible dynamics. The SFNO has important implications for machine learning-based simulation of climate dynamics that could eventually help accelerate our response to climate change.
Polarized Self-Attention: Towards High-quality Pixel-wise Regression
Pixel-wise regression is probably the most common problem in fine-grained computer vision tasks, such as estimating keypoint heatmaps and segmentation masks. These regression problems are very challenging particularly because they require, at low computation overheads, modeling long-range dependencies on high-resolution inputs/outputs to estimate the highly nonlinear pixel-wise semantics. While attention mechanisms in Deep Convolutional Neural Networks(DCNNs) has become popular for boosting long-range dependencies, element-specific attention, such as Nonlocal blocks, is highly complex and noise-sensitive to learn, and most of simplified attention hybrids try to reach the best compromise among multiple types of tasks. In this paper, we present the Polarized Self-Attention(PSA) block that incorporates two critical designs towards high-quality pixel-wise regression: (1) Polarized filtering: keeping high internal resolution in both channel and spatial attention computation while completely collapsing input tensors along their counterpart dimensions. (2) Enhancement: composing non-linearity that directly fits the output distribution of typical fine-grained regression, such as the 2D Gaussian distribution (keypoint heatmaps), or the 2D Binormial distribution (binary segmentation masks). PSA appears to have exhausted the representation capacity within its channel-only and spatial-only branches, such that there is only marginal metric differences between its sequential and parallel layouts. Experimental results show that PSA boosts standard baselines by 2-4 points, and boosts state-of-the-arts by 1-2 points on 2D pose estimation and semantic segmentation benchmarks.
Git Re-Basin: Merging Models modulo Permutation Symmetries
The success of deep learning is due in large part to our ability to solve certain massive non-convex optimization problems with relative ease. Though non-convex optimization is NP-hard, simple algorithms -- often variants of stochastic gradient descent -- exhibit surprising effectiveness in fitting large neural networks in practice. We argue that neural network loss landscapes often contain (nearly) a single basin after accounting for all possible permutation symmetries of hidden units a la Entezari et al. 2021. We introduce three algorithms to permute the units of one model to bring them into alignment with a reference model in order to merge the two models in weight space. This transformation produces a functionally equivalent set of weights that lie in an approximately convex basin near the reference model. Experimentally, we demonstrate the single basin phenomenon across a variety of model architectures and datasets, including the first (to our knowledge) demonstration of zero-barrier linear mode connectivity between independently trained ResNet models on CIFAR-10. Additionally, we identify intriguing phenomena relating model width and training time to mode connectivity. Finally, we discuss shortcomings of the linear mode connectivity hypothesis, including a counterexample to the single basin theory.
A Novel Convolutional Neural Network Architecture with a Continuous Symmetry
This paper introduces a new Convolutional Neural Network (ConvNet) architecture inspired by a class of partial differential equations (PDEs) called quasi-linear hyperbolic systems. With comparable performance on the image classification task, it allows for the modification of the weights via a continuous group of symmetry. This is a significant shift from traditional models where the architecture and weights are essentially fixed. We wish to promote the (internal) symmetry as a new desirable property for a neural network, and to draw attention to the PDE perspective in analyzing and interpreting ConvNets in the broader Deep Learning community.
Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning
The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high.
Inference in Non-stationary High-Dimensional VARs
In this paper we construct an inferential procedure for Granger causality in high-dimensional non-stationary vector autoregressive (VAR) models. Our method does not require knowledge of the order of integration of the time series under consideration. We augment the VAR with at least as many lags as the suspected maximum order of integration, an approach which has been proven to be robust against the presence of unit roots in low dimensions. We prove that we can restrict the augmentation to only the variables of interest for the testing, thereby making the approach suitable for high dimensions. We combine this lag augmentation with a post-double-selection procedure in which a set of initial penalized regressions is performed to select the relevant variables for both the Granger causing and caused variables. We then establish uniform asymptotic normality of a second-stage regression involving only the selected variables. Finite sample simulations show good performance, an application to investigate the (predictive) causes and effects of economic uncertainty illustrates the need to allow for unknown orders of integration.
Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions
Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.
Understanding Hallucinations in Diffusion Models through Mode Interpolation
Colloquially speaking, image generation models based upon diffusion processes are frequently said to exhibit "hallucinations," samples that could never occur in the training data. But where do such hallucinations come from? In this paper, we study a particular failure mode in diffusion models, which we term mode interpolation. Specifically, we find that diffusion models smoothly "interpolate" between nearby data modes in the training set, to generate samples that are completely outside the support of the original training distribution; this phenomenon leads diffusion models to generate artifacts that never existed in real data (i.e., hallucinations). We systematically study the reasons for, and the manifestation of this phenomenon. Through experiments on 1D and 2D Gaussians, we show how a discontinuous loss landscape in the diffusion model's decoder leads to a region where any smooth approximation will cause such hallucinations. Through experiments on artificial datasets with various shapes, we show how hallucination leads to the generation of combinations of shapes that never existed. Finally, we show that diffusion models in fact know when they go out of support and hallucinate. This is captured by the high variance in the trajectory of the generated sample towards the final few backward sampling process. Using a simple metric to capture this variance, we can remove over 95% of hallucinations at generation time while retaining 96% of in-support samples. We conclude our exploration by showing the implications of such hallucination (and its removal) on the collapse (and stabilization) of recursive training on synthetic data with experiments on MNIST and 2D Gaussians dataset. We release our code at https://github.com/locuslab/diffusion-model-hallucination.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
Conditionally Strongly Log-Concave Generative Models
There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the varphi^4 model and weak lensing convergence maps with higher resolution than in previous works.