Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUnified Low-rank Compression Framework for Click-through Rate Prediction
Deep Click-Through Rate (CTR) prediction models play an important role in modern industrial recommendation scenarios. However, high memory overhead and computational costs limit their deployment in resource-constrained environments. Low-rank approximation is an effective method for computer vision and natural language processing models, but its application in compressing CTR prediction models has been less explored. Due to the limited memory and computing resources, compression of CTR prediction models often confronts three fundamental challenges, i.e., (1). How to reduce the model sizes to adapt to edge devices? (2). How to speed up CTR prediction model inference? (3). How to retain the capabilities of original models after compression? Previous low-rank compression research mostly uses tensor decomposition, which can achieve a high parameter compression ratio, but brings in AUC degradation and additional computing overhead. To address these challenges, we propose a unified low-rank decomposition framework for compressing CTR prediction models. We find that even with the most classic matrix decomposition SVD method, our framework can achieve better performance than the original model. To further improve the effectiveness of our framework, we locally compress the output features instead of compressing the model weights. Our unified low-rank compression framework can be applied to embedding tables and MLP layers in various CTR prediction models. Extensive experiments on two academic datasets and one real industrial benchmark demonstrate that, with 3-5x model size reduction, our compressed models can achieve both faster inference and higher AUC than the uncompressed original models. Our code is at https://github.com/yuhao318/Atomic_Feature_Mimicking.
Feature Flow Regularization: Improving Structured Sparsity in Deep Neural Networks
Pruning is a model compression method that removes redundant parameters in deep neural networks (DNNs) while maintaining accuracy. Most available filter pruning methods require complex treatments such as iterative pruning, features statistics/ranking, or additional optimization designs in the training process. In this paper, we propose a simple and effective regularization strategy from a new perspective of evolution of features, which we call feature flow regularization (FFR), for improving structured sparsity and filter pruning in DNNs. Specifically, FFR imposes controls on the gradient and curvature of feature flow along the neural network, which implicitly increases the sparsity of the parameters. The principle behind FFR is that coherent and smooth evolution of features will lead to an efficient network that avoids redundant parameters. The high structured sparsity obtained from FFR enables us to prune filters effectively. Experiments with VGGNets, ResNets on CIFAR-10/100, and Tiny ImageNet datasets demonstrate that FFR can significantly improve both unstructured and structured sparsity. Our pruning results in terms of reduction of parameters and FLOPs are comparable to or even better than those of state-of-the-art pruning methods.
ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization
Parameter-efficient fine-tuning (PEFT) techniques make it possible to efficiently adapt a language model to create "expert" models that specialize to new tasks or domains. Recent techniques in model merging and compositional generalization leverage these expert models by dynamically composing modules to improve zero/few-shot generalization. Despite the efficiency of PEFT methods, the size of expert models can make it onerous to retrieve expert models per query over high-latency networks like the Internet or serve multiple experts on a single GPU. To address these issues, we present ComPEFT, a novel method for compressing fine-tuning residuals (task vectors) of PEFT based models. ComPEFT employs sparsification and ternary quantization to reduce the size of the PEFT module without performing any additional retraining while preserving or enhancing model performance. In extensive evaluation across T5, T0, and LLaMA-based models with 200M - 65B parameters, ComPEFT achieves compression ratios of 8x - 50x. In particular, we show that ComPEFT improves with scale - stronger models exhibit higher compressibility and better performance. For example, we show that ComPEFT applied to LLaMA outperforms QLoRA by 4.16% on MMLU with a storage size reduction of up to 26x. In addition, we show that the compressed experts produced by ComPEFT maintain few-shot compositional generalization capabilities, facilitate efficient communication and computation, and exhibit enhanced performance when merged. Lastly, we provide an analysis of different method components, compare it with other PEFT methods, and test ComPEFT's efficacy for compressing the residual of full-finetuning. Our code is available at https://github.com/prateeky2806/compeft.
DeepFilterNet: Perceptually Motivated Real-Time Speech Enhancement
Multi-frame algorithms for single-channel speech enhancement are able to take advantage from short-time correlations within the speech signal. Deep Filtering (DF) was proposed to directly estimate a complex filter in frequency domain to take advantage of these correlations. In this work, we present a real-time speech enhancement demo using DeepFilterNet. DeepFilterNet's efficiency is enabled by exploiting domain knowledge of speech production and psychoacoustic perception. Our model is able to match state-of-the-art speech enhancement benchmarks while achieving a real-time-factor of 0.19 on a single threaded notebook CPU. The framework as well as pretrained weights have been published under an open source license.
Sequence Modeling with Multiresolution Convolutional Memory
Efficiently capturing the long-range patterns in sequential data sources salient to a given task -- such as classification and generative modeling -- poses a fundamental challenge. Popular approaches in the space tradeoff between the memory burden of brute-force enumeration and comparison, as in transformers, the computational burden of complicated sequential dependencies, as in recurrent neural networks, or the parameter burden of convolutional networks with many or large filters. We instead take inspiration from wavelet-based multiresolution analysis to define a new building block for sequence modeling, which we call a MultiresLayer. The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence. Our MultiresConv can be implemented with shared filters across a dilated causal convolution tree. Thus it garners the computational advantages of convolutional networks and the principled theoretical motivation of wavelet decompositions. Our MultiresLayer is straightforward to implement, requires significantly fewer parameters, and maintains at most a O(Nlog N) memory footprint for a length N sequence. Yet, by stacking such layers, our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks using CIFAR-10, ListOps, and PTB-XL datasets.
Q-Filters: Leveraging QK Geometry for Efficient KV Cache Compression
Autoregressive language models rely on a Key-Value (KV) Cache, which avoids re-computing past hidden states during generation, making it faster. As model sizes and context lengths grow, the KV Cache becomes a significant memory bottleneck, which calls for compression methods that limit its size during generation. In this paper, we discover surprising properties of Query (Q) and Key (K) vectors that allow us to efficiently approximate attention scores without computing the attention maps. We propose Q-Filters, a training-free KV Cache compression method that filters out less crucial Key-Value pairs based on a single context-agnostic projection. Contrarily to many alternatives, Q-Filters is compatible with FlashAttention, as it does not require direct access to attention weights. Experimental results in long-context settings demonstrate that Q-Filters is competitive with attention-based compression methods such as SnapKV in retrieval tasks while consistently outperforming efficient compression schemes such as Streaming-LLM in generation setups. Notably, Q-Filters achieves a 99% accuracy in the needle-in-a-haystack task with a x32 compression level while reducing the generation perplexity drop by up to 65% in text generation compared to Streaming-LLM.
Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression
Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.
Music2Latent2: Audio Compression with Summary Embeddings and Autoregressive Decoding
Efficiently compressing high-dimensional audio signals into a compact and informative latent space is crucial for various tasks, including generative modeling and music information retrieval (MIR). Existing audio autoencoders, however, often struggle to achieve high compression ratios while preserving audio fidelity and facilitating efficient downstream applications. We introduce Music2Latent2, a novel audio autoencoder that addresses these limitations by leveraging consistency models and a novel approach to representation learning based on unordered latent embeddings, which we call summary embeddings. Unlike conventional methods that encode local audio features into ordered sequences, Music2Latent2 compresses audio signals into sets of summary embeddings, where each embedding can capture distinct global features of the input sample. This enables to achieve higher reconstruction quality at the same compression ratio. To handle arbitrary audio lengths, Music2Latent2 employs an autoregressive consistency model trained on two consecutive audio chunks with causal masking, ensuring coherent reconstruction across segment boundaries. Additionally, we propose a novel two-step decoding procedure that leverages the denoising capabilities of consistency models to further refine the generated audio at no additional cost. Our experiments demonstrate that Music2Latent2 outperforms existing continuous audio autoencoders regarding audio quality and performance on downstream tasks. Music2Latent2 paves the way for new possibilities in audio compression.
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning.
End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression
Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.
Context-Based Trit-Plane Coding for Progressive Image Compression
Trit-plane coding enables deep progressive image compression, but it cannot use autoregressive context models. In this paper, we propose the context-based trit-plane coding (CTC) algorithm to achieve progressive compression more compactly. First, we develop the context-based rate reduction module to estimate trit probabilities of latent elements accurately and thus encode the trit-planes compactly. Second, we develop the context-based distortion reduction module to refine partial latent tensors from the trit-planes and improve the reconstructed image quality. Third, we propose a retraining scheme for the decoder to attain better rate-distortion tradeoffs. Extensive experiments show that CTC outperforms the baseline trit-plane codec significantly in BD-rate on the Kodak lossless dataset, while increasing the time complexity only marginally. Our codes are available at https://github.com/seungminjeon-github/CTC.
Thunder: Thumbnail based Fast Lightweight Image Denoising Network
To achieve promising results on removing noise from real-world images, most of existing denoising networks are formulated with complex network structure, making them impractical for deployment. Some attempts focused on reducing the number of filters and feature channels but suffered from large performance loss, and a more practical and lightweight denoising network with fast inference speed is of high demand. To this end, a Thumbnail based Denoising Network dubbed Thunder, is proposed and implemented as a lightweight structure for fast restoration without comprising the denoising capabilities. Specifically, the Thunder model contains two newly-established modules: (1) a wavelet-based Thumbnail Subspace Encoder (TSE) which can leverage sub-bands correlation to provide an approximate thumbnail based on the low-frequent feature; (2) a Subspace Projection based Refine Module (SPR) which can restore the details for thumbnail progressively based on the subspace projection approach. Extensive experiments have been carried out on two real-world denoising benchmarks, demonstrating that the proposed Thunder outperforms the existing lightweight models and achieves competitive performance on PSNR and SSIM when compared with the complex designs.
Mip-Splatting: Alias-free 3D Gaussian Splatting
Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, \eg, by changing focal length or camera distance. We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter. To address this problem, we introduce a 3D smoothing filter which constrains the size of the 3D Gaussian primitives based on the maximal sampling frequency induced by the input views, eliminating high-frequency artifacts when zooming in. Moreover, replacing 2D dilation with a 2D Mip filter, which simulates a 2D box filter, effectively mitigates aliasing and dilation issues. Our evaluation, including scenarios such a training on single-scale images and testing on multiple scales, validates the effectiveness of our approach.
Devil in the Number: Towards Robust Multi-modality Data Filter
In order to appropriately filter multi-modality data sets on a web-scale, it becomes crucial to employ suitable filtering methods to boost performance and reduce training costs. For instance, LAION papers employs the CLIP score filter to select data with CLIP scores surpassing a certain threshold. On the other hand, T-MARS achieves high-quality data filtering by detecting and masking text within images and then filtering by CLIP score. Through analyzing the dataset, we observe a significant proportion of redundant information, such as numbers, present in the textual content. Our experiments on a subset of the data unveil the profound impact of these redundant elements on the CLIP scores. A logical approach would involve reevaluating the CLIP scores after eliminating these influences. Experimentally, our text-based CLIP filter outperforms the top-ranked method on the ``small scale" of DataComp (a data filtering benchmark) on ImageNet distribution shifts, achieving a 3.6% performance improvement. The results also demonstrate that our proposed text-masked filter outperforms the original CLIP score filter when selecting the top 40% of the data. The impact of numbers on CLIP and their handling provide valuable insights for improving the effectiveness of CLIP training, including language rewrite techniques.
White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?
In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .
CURing Large Models: Compression via CUR Decomposition
Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges such as memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. For example, it reduces Llama3.1-8B's parameters to 7.32B (-9%) in just 129 seconds, over 20 times faster than prior compression methods.
Compressing Features for Learning with Noisy Labels
Supervised learning can be viewed as distilling relevant information from input data into feature representations. This process becomes difficult when supervision is noisy as the distilled information might not be relevant. In fact, recent research shows that networks can easily overfit all labels including those that are corrupted, and hence can hardly generalize to clean datasets. In this paper, we focus on the problem of learning with noisy labels and introduce compression inductive bias to network architectures to alleviate this over-fitting problem. More precisely, we revisit one classical regularization named Dropout and its variant Nested Dropout. Dropout can serve as a compression constraint for its feature dropping mechanism, while Nested Dropout further learns ordered feature representations w.r.t. feature importance. Moreover, the trained models with compression regularization are further combined with Co-teaching for performance boost. Theoretically, we conduct bias-variance decomposition of the objective function under compression regularization. We analyze it for both single model and Co-teaching. This decomposition provides three insights: (i) it shows that over-fitting is indeed an issue for learning with noisy labels; (ii) through an information bottleneck formulation, it explains why the proposed feature compression helps in combating label noise; (iii) it gives explanations on the performance boost brought by incorporating compression regularization into Co-teaching. Experiments show that our simple approach can have comparable or even better performance than the state-of-the-art methods on benchmarks with real-world label noise including Clothing1M and ANIMAL-10N. Our implementation is available at https://yingyichen-cyy.github.io/CompressFeatNoisyLabels/.
Self-Calibrated Cross Attention Network for Few-Shot Segmentation
The key to the success of few-shot segmentation (FSS) lies in how to effectively utilize support samples. Most solutions compress support foreground (FG) features into prototypes, but lose some spatial details. Instead, others use cross attention to fuse query features with uncompressed support FG. Query FG could be fused with support FG, however, query background (BG) cannot find matched BG features in support FG, yet inevitably integrates dissimilar features. Besides, as both query FG and BG are combined with support FG, they get entangled, thereby leading to ineffective segmentation. To cope with these issues, we design a self-calibrated cross attention (SCCA) block. For efficient patch-based attention, query and support features are firstly split into patches. Then, we design a patch alignment module to align each query patch with its most similar support patch for better cross attention. Specifically, SCCA takes a query patch as Q, and groups the patches from the same query image and the aligned patches from the support image as K&V. In this way, the query BG features are fused with matched BG features (from query patches), and thus the aforementioned issues will be mitigated. Moreover, when calculating SCCA, we design a scaled-cosine mechanism to better utilize the support features for similarity calculation. Extensive experiments conducted on PASCAL-5^i and COCO-20^i demonstrate the superiority of our model, e.g., the mIoU score under 5-shot setting on COCO-20^i is 5.6%+ better than previous state-of-the-arts. The code is available at https://github.com/Sam1224/SCCAN.
SPANet: Frequency-balancing Token Mixer using Spectral Pooling Aggregation Modulation
Recent studies show that self-attentions behave like low-pass filters (as opposed to convolutions) and enhancing their high-pass filtering capability improves model performance. Contrary to this idea, we investigate existing convolution-based models with spectral analysis and observe that improving the low-pass filtering in convolution operations also leads to performance improvement. To account for this observation, we hypothesize that utilizing optimal token mixers that capture balanced representations of both high- and low-frequency components can enhance the performance of models. We verify this by decomposing visual features into the frequency domain and combining them in a balanced manner. To handle this, we replace the balancing problem with a mask filtering problem in the frequency domain. Then, we introduce a novel token-mixer named SPAM and leverage it to derive a MetaFormer model termed as SPANet. Experimental results show that the proposed method provides a way to achieve this balance, and the balanced representations of both high- and low-frequency components can improve the performance of models on multiple computer vision tasks. Our code is available at https://doranlyong.github.io/projects/spanet/{https://doranlyong.github.io/projects/spanet/}.
Learned complex masks for multi-instrument source separation
Music source separation in the time-frequency domain is commonly achieved by applying a soft or binary mask to the magnitude component of (complex) spectrograms. The phase component is usually not estimated, but instead copied from the mixture and applied to the magnitudes of the estimated isolated sources. While this method has several practical advantages, it imposes an upper bound on the performance of the system, where the estimated isolated sources inherently exhibit audible "phase artifacts". In this paper we address these shortcomings by directly estimating masks in the complex domain, extending recent work from the speech enhancement literature. The method is particularly well suited for multi-instrument musical source separation since residual phase artifacts are more pronounced for spectrally overlapping instrument sources, a common scenario in music. We show that complex masks result in better separation than masks that operate solely on the magnitude component.
VTrans: Accelerating Transformer Compression with Variational Information Bottleneck based Pruning
In recent years, there has been a growing emphasis on compressing large pre-trained transformer models for resource-constrained devices. However, traditional pruning methods often leave the embedding layer untouched, leading to model over-parameterization. Additionally, they require extensive compression time with large datasets to maintain performance in pruned models. To address these challenges, we propose VTrans, an iterative pruning framework guided by the Variational Information Bottleneck (VIB) principle. Our method compresses all structural components, including embeddings, attention heads, and layers using VIB-trained masks. This approach retains only essential weights in each layer, ensuring compliance with specified model size or computational constraints. Notably, our method achieves upto 70% more compression than prior state-of-the-art approaches, both task-agnostic and task-specific. We further propose faster variants of our method: Fast-VTrans utilizing only 3% of the data and Faster-VTrans, a time efficient alternative that involves exclusive finetuning of VIB masks, accelerating compression by upto 25 times with minimal performance loss compared to previous methods. Extensive experiments on BERT, ROBERTa, and GPT-2 models substantiate the efficacy of our method. Moreover, our method demonstrates scalability in compressing large models such as LLaMA-2-7B, achieving superior performance compared to previous pruning methods. Additionally, we use attention-based probing to qualitatively assess model redundancy and interpret the efficiency of our approach. Notably, our method considers heads with high attention to special and current tokens in un-pruned model as foremost candidates for pruning while retained heads are observed to attend more to task-critical keywords.
Enhancing Neural Training via a Correlated Dynamics Model
As neural networks grow in scale, their training becomes both computationally demanding and rich in dynamics. Amidst the flourishing interest in these training dynamics, we present a novel observation: Parameters during training exhibit intrinsic correlations over time. Capitalizing on this, we introduce Correlation Mode Decomposition (CMD). This algorithm clusters the parameter space into groups, termed modes, that display synchronized behavior across epochs. This enables CMD to efficiently represent the training dynamics of complex networks, like ResNets and Transformers, using only a few modes. Moreover, test set generalization is enhanced. We introduce an efficient CMD variant, designed to run concurrently with training. Our experiments indicate that CMD surpasses the state-of-the-art method for compactly modeled dynamics on image classification. Our modeling can improve training efficiency and lower communication overhead, as shown by our preliminary experiments in the context of federated learning.
Characterising Bias in Compressed Models
The popularity and widespread use of pruning and quantization is driven by the severe resource constraints of deploying deep neural networks to environments with strict latency, memory and energy requirements. These techniques achieve high levels of compression with negligible impact on top-line metrics (top-1 and top-5 accuracy). However, overall accuracy hides disproportionately high errors on a small subset of examples; we call this subset Compression Identified Exemplars (CIE). We further establish that for CIE examples, compression amplifies existing algorithmic bias. Pruning disproportionately impacts performance on underrepresented features, which often coincides with considerations of fairness. Given that CIE is a relatively small subset but a great contributor of error in the model, we propose its use as a human-in-the-loop auditing tool to surface a tractable subset of the dataset for further inspection or annotation by a domain expert. We provide qualitative and quantitative support that CIE surfaces the most challenging examples in the data distribution for human-in-the-loop auditing.
COMCAT: Towards Efficient Compression and Customization of Attention-Based Vision Models
Attention-based vision models, such as Vision Transformer (ViT) and its variants, have shown promising performance in various computer vision tasks. However, these emerging architectures suffer from large model sizes and high computational costs, calling for efficient model compression solutions. To date, pruning ViTs has been well studied, while other compression strategies that have been widely applied in CNN compression, e.g., model factorization, is little explored in the context of ViT compression. This paper explores an efficient method for compressing vision transformers to enrich the toolset for obtaining compact attention-based vision models. Based on the new insight on the multi-head attention layer, we develop a highly efficient ViT compression solution, which outperforms the state-of-the-art pruning methods. For compressing DeiT-small and DeiT-base models on ImageNet, our proposed approach can achieve 0.45% and 0.76% higher top-1 accuracy even with fewer parameters. Our finding can also be applied to improve the customization efficiency of text-to-image diffusion models, with much faster training (up to 2.6times speedup) and lower extra storage cost (up to 1927.5times reduction) than the existing works.
Scene Matters: Model-based Deep Video Compression
Video compression has always been a popular research area, where many traditional and deep video compression methods have been proposed. These methods typically rely on signal prediction theory to enhance compression performance by designing high efficient intra and inter prediction strategies and compressing video frames one by one. In this paper, we propose a novel model-based video compression (MVC) framework that regards scenes as the fundamental units for video sequences. Our proposed MVC directly models the intensity variation of the entire video sequence in one scene, seeking non-redundant representations instead of reducing redundancy through spatio-temporal predictions. To achieve this, we employ implicit neural representation as our basic modeling architecture. To improve the efficiency of video modeling, we first propose context-related spatial positional embedding and frequency domain supervision in spatial context enhancement. For temporal correlation capturing, we design the scene flow constrain mechanism and temporal contrastive loss. Extensive experimental results demonstrate that our method achieves up to a 20\% bitrate reduction compared to the latest video coding standard H.266 and is more efficient in decoding than existing video coding strategies.
Restoring Images in Adverse Weather Conditions via Histogram Transformer
Transformer-based image restoration methods in adverse weather have achieved significant progress. Most of them use self-attention along the channel dimension or within spatially fixed-range blocks to reduce computational load. However, such a compromise results in limitations in capturing long-range spatial features. Inspired by the observation that the weather-induced degradation factors mainly cause similar occlusion and brightness, in this work, we propose an efficient Histogram Transformer (Histoformer) for restoring images affected by adverse weather. It is powered by a mechanism dubbed histogram self-attention, which sorts and segments spatial features into intensity-based bins. Self-attention is then applied across bins or within each bin to selectively focus on spatial features of dynamic range and process similar degraded pixels of the long range together. To boost histogram self-attention, we present a dynamic-range convolution enabling conventional convolution to conduct operation over similar pixels rather than neighbor pixels. We also observe that the common pixel-wise losses neglect linear association and correlation between output and ground-truth. Thus, we propose to leverage the Pearson correlation coefficient as a loss function to enforce the recovered pixels following the identical order as ground-truth. Extensive experiments demonstrate the efficacy and superiority of our proposed method. We have released the codes in Github.
Relevance Filtering for Embedding-based Retrieval
In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
PerCoV2: Improved Ultra-Low Bit-Rate Perceptual Image Compression with Implicit Hierarchical Masked Image Modeling
We introduce PerCoV2, a novel and open ultra-low bit-rate perceptual image compression system designed for bandwidth- and storage-constrained applications. Building upon prior work by Careil et al., PerCoV2 extends the original formulation to the Stable Diffusion 3 ecosystem and enhances entropy coding efficiency by explicitly modeling the discrete hyper-latent image distribution. To this end, we conduct a comprehensive comparison of recent autoregressive methods (VAR and MaskGIT) for entropy modeling and evaluate our approach on the large-scale MSCOCO-30k benchmark. Compared to previous work, PerCoV2 (i) achieves higher image fidelity at even lower bit-rates while maintaining competitive perceptual quality, (ii) features a hybrid generation mode for further bit-rate savings, and (iii) is built solely on public components. Code and trained models will be released at https://github.com/Nikolai10/PerCoV2.
TensorLLM: Tensorising Multi-Head Attention for Enhanced Reasoning and Compression in LLMs
The reasoning abilities of Large Language Models (LLMs) can be improved by structurally denoising their weights, yet existing techniques primarily focus on denoising the feed-forward network (FFN) of the transformer block, and can not efficiently utilise the Multi-head Attention (MHA) block, which is the core of transformer architectures. To address this issue, we propose a novel intuitive framework that, at its very core, performs MHA compression through a multi-head tensorisation process and the Tucker decomposition. This enables both higher-dimensional structured denoising and compression of the MHA weights, by enforcing a shared higher-dimensional subspace across the weights of the multiple attention heads. We demonstrate that this approach consistently enhances the reasoning capabilities of LLMs across multiple benchmark datasets, and for both encoder-only and decoder-only architectures, while achieving compression rates of up to sim 250 times in the MHA weights, all without requiring any additional data, training, or fine-tuning. Furthermore, we show that the proposed method can be seamlessly combined with existing FFN-only-based denoising techniques to achieve further improvements in LLM reasoning performance.
Complex-valued neural networks for machine learning on non-stationary physical data
Deep learning has become an area of interest in most scientific areas, including physical sciences. Modern networks apply real-valued transformations on the data. Particularly, convolutions in convolutional neural networks discard phase information entirely. Many deterministic signals, such as seismic data or electrical signals, contain significant information in the phase of the signal. We explore complex-valued deep convolutional networks to leverage non-linear feature maps. Seismic data commonly has a lowcut filter applied, to attenuate noise from ocean waves and similar long wavelength contributions. Discarding the phase information leads to low-frequency aliasing analogous to the Nyquist-Shannon theorem for high frequencies. In non-stationary data, the phase content can stabilize training and improve the generalizability of neural networks. While it has been shown that phase content can be restored in deep neural networks, we show how including phase information in feature maps improves both training and inference from deterministic physical data. Furthermore, we show that the reduction of parameters in a complex network outperforms larger real-valued networks.
Deep Spatiotemporal Clutter Filtering of Transthoracic Echocardiographic Images: Leveraging Contextual Attention and Residual Learning
This study presents a deep convolutional autoencoder network for filtering reverberation clutter from transthoracic echocardiographic (TTE) image sequences. Given the spatiotemporal nature of this type of clutter, the filtering network employs 3D convolutional layers to suppress it throughout the cardiac cycle. The design of the network incorporates two key features that contribute to the effectiveness of the filter: 1) an attention mechanism for focusing on cluttered regions and leveraging contextual information, and 2) residual learning for preserving fine image structures. To train the network, a diverse set of artifact patterns was simulated and superimposed onto ultra-realistic synthetic TTE sequences from six ultrasound vendors, generating input for the filtering network. The artifact-free sequences served as ground-truth. Performance of the filtering network was evaluated using unseen synthetic and in vivo artifactual sequences. Results from the in vivo dataset confirmed the network's strong generalization capabilities, despite being trained solely on synthetic data and simulated artifacts. The suitability of the filtered sequences for downstream processing was assessed by computing segmental strain curves. A significant reduction in the discrepancy between strain profiles computed from cluttered and clutter-free segments was observed after filtering the cluttered sequences with the proposed network. The trained network processes a TTE sequence in a fraction of a second, enabling real-time clutter filtering and potentially improving the precision of clinically relevant indices derived from TTE sequences. The source code of the proposed method and example video files of the filtering results are available at: https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main{https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main}.
ConsistencyDet: Robust Object Detector with Denoising Paradigm of Consistency Model
Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on perturbed bounding boxes of annotated entities. This framework, termed ConsistencyDet, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any temporal stage back to its pristine state, thereby realizing a ``one-step denoising'' mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into the definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics.
Training-free Long Video Generation with Chain of Diffusion Model Experts
Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose ConFiner, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure control and spatial-temporal refinement. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
Billion-scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering
This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.
MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting
Although achieving significant progress, existing deep generative inpainting methods are far from real-world applications due to the low generalization across different scenes. As a result, the generated images usually contain artifacts or the filled pixels differ greatly from the ground truth. Image-level predictive filtering is a widely used image restoration technique, predicting suitable kernels adaptively according to different input scenes. Inspired by this inherent advantage, we explore the possibility of addressing image inpainting as a filtering task. To this end, we first study the advantages and challenges of image-level predictive filtering for image inpainting: the method can preserve local structures and avoid artifacts but fails to fill large missing areas. Then, we propose semantic filtering by conducting filtering on the deep feature level, which fills the missing semantic information but fails to recover the details. To address the issues while adopting the respective advantages, we propose a novel filtering technique, i.e., Multilevel Interactive Siamese Filtering (MISF), which contains two branches: kernel prediction branch (KPB) and semantic & image filtering branch (SIFB). These two branches are interactively linked: SIFB provides multi-level features for KPB while KPB predicts dynamic kernels for SIFB. As a result, the final method takes the advantage of effective semantic & image-level filling for high-fidelity inpainting. We validate our method on three challenging datasets, i.e., Dunhuang, Places2, and CelebA. Our method outperforms state-of-the-art baselines on four metrics, i.e., L1, PSNR, SSIM, and LPIPS. Please try the released code and model at https://github.com/tsingqguo/misf.
COMQ: A Backpropagation-Free Algorithm for Post-Training Quantization
Post-training quantization (PTQ) has emerged as a practical approach to compress large neural networks, making them highly efficient for deployment. However, effectively reducing these models to their low-bit counterparts without compromising the original accuracy remains a key challenge. In this paper, we propose an innovative PTQ algorithm termed COMQ, which sequentially conducts coordinate-wise minimization of the layer-wise reconstruction errors. We consider the widely used integer quantization, where every quantized weight can be decomposed into a shared floating-point scalar and an integer bit-code. Within a fixed layer, COMQ treats all the scaling factor(s) and bit-codes as the variables of the reconstruction error. Every iteration improves this error along a single coordinate while keeping all other variables constant. COMQ is easy to use and requires no hyper-parameter tuning. It instead involves only dot products and rounding operations. We update these variables in a carefully designed greedy order, significantly enhancing the accuracy. COMQ achieves remarkable results in quantizing 4-bit Vision Transformers, with a negligible loss of less than 1% in Top-1 accuracy. In 4-bit INT quantization of convolutional neural networks, COMQ maintains near-lossless accuracy with a minimal drop of merely 0.3% in Top-1 accuracy.
S2LIC: Learned Image Compression with the SwinV2 Block, Adaptive Channel-wise and Global-inter Attention Context
Recently, deep learning technology has been successfully applied in the field of image compression, leading to superior rate-distortion performance. It is crucial to design an effective and efficient entropy model to estimate the probability distribution of the latent representation. However, the majority of entropy models primarily focus on one-dimensional correlation processing between channel and spatial information. In this paper, we propose an Adaptive Channel-wise and Global-inter attention Context (ACGC) entropy model, which can efficiently achieve dual feature aggregation in both inter-slice and intraslice contexts. Specifically, we divide the latent representation into different slices and then apply the ACGC model in a parallel checkerboard context to achieve faster decoding speed and higher rate-distortion performance. In order to capture redundant global features across different slices, we utilize deformable attention in adaptive global-inter attention to dynamically refine the attention weights based on the actual spatial relationships and context. Furthermore, in the main transformation structure, we propose a high-performance S2LIC model. We introduce the residual SwinV2 Transformer model to capture global feature information and utilize a dense block network as the feature enhancement module to improve the nonlinear representation of the image within the transformation structure. Experimental results demonstrate that our method achieves faster encoding and decoding speeds and outperforms VTM-17.1 and some recent learned image compression methods in both PSNR and MS-SSIM metrics.
STELLA: Continual Audio-Video Pre-training with Spatio-Temporal Localized Alignment
Continuously learning a variety of audio-video semantics over time is crucial for audio-related reasoning tasks in our ever-evolving world. However, this is a nontrivial problem and poses two critical challenges: sparse spatio-temporal correlation between audio-video pairs and multimodal correlation overwriting that forgets audio-video relations. To tackle this problem, we propose a new continual audio-video pre-training method with two novel ideas: (1) Localized Patch Importance Scoring: we introduce a multimodal encoder to determine the importance score for each patch, emphasizing semantically intertwined audio-video patches. (2) Replay-guided Correlation Assessment: to reduce the corruption of previously learned audiovisual knowledge due to drift, we propose to assess the correlation of the current patches on the past steps to identify the patches exhibiting high correlations with the past steps. Based on the results from the two ideas, we perform probabilistic patch selection for effective continual audio-video pre-training. Experimental validation on multiple benchmarks shows that our method achieves a 3.69%p of relative performance gain in zero-shot retrieval tasks compared to strong continual learning baselines, while reducing memory consumption by ~45%.
CoNo: Consistency Noise Injection for Tuning-free Long Video Diffusion
Tuning-free long video diffusion has been proposed to generate extended-duration videos with enriched content by reusing the knowledge from pre-trained short video diffusion model without retraining. However, most works overlook the fine-grained long-term video consistency modeling, resulting in limited scene consistency (i.e., unreasonable object or background transitions), especially with multiple text inputs. To mitigate this, we propose the Consistency Noise Injection, dubbed CoNo, which introduces the "look-back" mechanism to enhance the fine-grained scene transition between different video clips, and designs the long-term consistency regularization to eliminate the content shifts when extending video contents through noise prediction. In particular, the "look-back" mechanism breaks the noise scheduling process into three essential parts, where one internal noise prediction part is injected into two video-extending parts, intending to achieve a fine-grained transition between two video clips. The long-term consistency regularization focuses on explicitly minimizing the pixel-wise distance between the predicted noises of the extended video clip and the original one, thereby preventing abrupt scene transitions. Extensive experiments have shown the effectiveness of the above strategies by performing long-video generation under both single- and multi-text prompt conditions. The project has been available in https://wxrui182.github.io/CoNo.github.io/.
When Semantic Segmentation Meets Frequency Aliasing
Despite recent advancements in semantic segmentation, where and what pixels are hard to segment remains largely unexplored. Existing research only separates an image into easy and hard regions and empirically observes the latter are associated with object boundaries. In this paper, we conduct a comprehensive analysis of hard pixel errors, categorizing them into three types: false responses, merging mistakes, and displacements. Our findings reveal a quantitative association between hard pixels and aliasing, which is distortion caused by the overlapping of frequency components in the Fourier domain during downsampling. To identify the frequencies responsible for aliasing, we propose using the equivalent sampling rate to calculate the Nyquist frequency, which marks the threshold for aliasing. Then, we introduce the aliasing score as a metric to quantify the extent of aliasing. While positively correlated with the proposed aliasing score, three types of hard pixels exhibit different patterns. Here, we propose two novel de-aliasing filter (DAF) and frequency mixing (FreqMix) modules to alleviate aliasing degradation by accurately removing or adjusting frequencies higher than the Nyquist frequency. The DAF precisely removes the frequencies responsible for aliasing before downsampling, while the FreqMix dynamically selects high-frequency components within the encoder block. Experimental results demonstrate consistent improvements in semantic segmentation and low-light instance segmentation tasks. The code is available at: https://github.com/Linwei-Chen/Seg-Aliasing.
Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models
Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains relatively unexplored due to the high cost of training-based approaches and data collection challenges. One-shot pruning methods, although cost-effective and data-free, have become dominant in LLM pruning, but lead to performance decline under the structured pruning setting. In this work, we introduce a new paradigm for structurally pruning LLMs, called Compresso. Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process. Compresso addresses the challenges of expensive training costs and data collection by incorporating Low-Rank Adaptation (LoRA) into the L_0 regularization during the instruction tuning process. Then, we further augment the pruning algorithm by introducing a collaborative prompt that fosters collaboration between the LLM and the pruning algorithm, significantly boosting the overall performance. To this end, Compresso prunes LLaMA-7B to 5.4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2.62%. Extensive experiments demonstrate that Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.
MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with Module-wise Pruning Error Metric
Vision-language pre-trained models have achieved impressive performance on various downstream tasks. However, their large model sizes hinder their utilization on platforms with limited computational resources. We find that directly using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance. Recent efforts for VLP compression either adopt uni-modal compression metrics resulting in limited performance or involve costly mask-search processes with learnable masks. In this paper, we first propose the Module-wise Pruning Error (MoPE) metric, accurately assessing CLIP module importance by performance decline on cross-modal tasks. Using the MoPE metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages. For pre-training, MoPE-CLIP effectively leverages knowledge from the teacher model, significantly reducing pre-training costs while maintaining strong zero-shot capabilities. For fine-tuning, consecutive pruning from width to depth yields highly competitive task-specific models. Extensive experiments in two stages demonstrate the effectiveness of the MoPE metric, and MoPE-CLIP outperforms previous state-of-the-art VLP compression methods.
Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding
Cropping high-resolution document images into multiple sub-images is the most widely used approach for current Multimodal Large Language Models (MLLMs) to do document understanding. Most of current document understanding methods preserve all tokens within sub-images and treat them equally. This neglects their different informativeness and leads to a significant increase in the number of image tokens. To perform a more adaptive and efficient document understanding, we propose Token-level Correlation-guided Compression, a parameter-free and plug-and-play methodology to optimize token processing. Firstly, we propose an innovative approach for assessing the pattern repetitiveness based on the correlation between each patch tokens. This method identifies redundant tokens, allowing for the determination of the sub-image's information density. Secondly, we present a token-level sampling method that efficiently captures the most informative tokens by delving into the correlation between the [CLS] token and patch tokens. By integrating these strategies, we develop a plug-and-play adaptive compressor module that can be seamlessly incorporated into MLLMs utilizing cropping techniques. This module not only enhances the processing speed during training and inference but also maintains comparable performance. We conduct experiments with the SOTA document understanding model mPLUG-DocOwl1.5 and the effectiveness is demonstrated through extensive comparisons with other compression methods.
Patch-wise Contrastive Style Learning for Instagram Filter Removal
Image-level corruptions and perturbations degrade the performance of CNNs on different downstream vision tasks. Social media filters are one of the most common resources of various corruptions and perturbations for real-world visual analysis applications. The negative effects of these distractive factors can be alleviated by recovering the original images with their pure style for the inference of the downstream vision tasks. Assuming these filters substantially inject a piece of additional style information to the social media images, we can formulate the problem of recovering the original versions as a reverse style transfer problem. We introduce Contrastive Instagram Filter Removal Network (CIFR), which enhances this idea for Instagram filter removal by employing a novel multi-layer patch-wise contrastive style learning mechanism. Experiments show our proposed strategy produces better qualitative and quantitative results than the previous studies. Moreover, we present the results of our additional experiments for proposed architecture within different settings. Finally, we present the inference outputs and quantitative comparison of filtered and recovered images on localization and segmentation tasks to encourage the main motivation for this problem.
MoDeGPT: Modular Decomposition for Large Language Model Compression
Large Language Models (LLMs) have reshaped the landscape of artificial intelligence by demonstrating exceptional performance across various tasks. However, substantial computational requirements make their deployment challenging on devices with limited resources. Recently, compression methods using low-rank matrix techniques have shown promise, yet these often lead to degraded accuracy or introduce significant overhead in parameters and inference latency. This paper introduces Modular Decomposition (MoDeGPT), a novel structured compression framework that does not need recovery fine-tuning while resolving the above drawbacks. MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions via reconstructing the module-level outputs. MoDeGPT is developed based on a theoretical framework that utilizes three well-established matrix decomposition algorithms -- Nystr\"om approximation, CR decomposition, and SVD -- and applies them to our redefined transformer modules. Our comprehensive experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods that rely on gradient information, and saves 98% of compute costs on compressing a 13B model. On Llama-2/3 and OPT models, MoDeGPT maintains 90-95% zero-shot performance with 25-30% compression rates. Moreover, the compression can be done on a single GPU within a few hours and increases the inference throughput by up to 46%.
Learned Compression for Compressed Learning
Modern sensors produce increasingly rich streams of high-resolution data. Due to resource constraints, machine learning systems discard the vast majority of this information via resolution reduction. Compressed-domain learning allows models to operate on compact latent representations, allowing higher effective resolution for the same budget. However, existing compression systems are not ideal for compressed learning. Linear transform coding and end-to-end learned compression systems reduce bitrate, but do not uniformly reduce dimensionality; thus, they do not meaningfully increase efficiency. Generative autoencoders reduce dimensionality, but their adversarial or perceptual objectives lead to significant information loss. To address these limitations, we introduce WaLLoC (Wavelet Learned Lossy Compression), a neural codec architecture that combines linear transform coding with nonlinear dimensionality-reducing autoencoders. WaLLoC sandwiches a shallow, asymmetric autoencoder and entropy bottleneck between an invertible wavelet packet transform. Across several key metrics, WaLLoC outperforms the autoencoders used in state-of-the-art latent diffusion models. WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, providing compatibility with modalities beyond RGB images and stereo audio. WaLLoC's encoder consists almost entirely of linear operations, making it exceptionally efficient and suitable for mobile computing, remote sensing, and learning directly from compressed data. We demonstrate WaLLoC's capability for compressed-domain learning across several tasks, including image classification, colorization, document understanding, and music source separation. Our code, experiments, and pre-trained audio and image codecs are available at https://ut-sysml.org/walloc
Communication-efficient Federated Learning with Single-Step Synthetic Features Compressor for Faster Convergence
Reducing communication overhead in federated learning (FL) is challenging but crucial for large-scale distributed privacy-preserving machine learning. While methods utilizing sparsification or others can largely lower the communication overhead, the convergence rate is also greatly compromised. In this paper, we propose a novel method, named single-step synthetic features compressor (3SFC), to achieve communication-efficient FL by directly constructing a tiny synthetic dataset based on raw gradients. Thus, 3SFC can achieve an extremely low compression rate when the constructed dataset contains only one data sample. Moreover, 3SFC's compressing phase utilizes a similarity-based objective function so that it can be optimized with just one step, thereby considerably improving its performance and robustness. In addition, to minimize the compressing error, error feedback (EF) is also incorporated into 3SFC. Experiments on multiple datasets and models suggest that 3SFC owns significantly better convergence rates compared to competing methods with lower compression rates (up to 0.02%). Furthermore, ablation studies and visualizations show that 3SFC can carry more information than competing methods for every communication round, further validating its effectiveness.
Is Cosine-Similarity of Embeddings Really About Similarity?
Cosine-similarity is the cosine of the angle between two vectors, or equivalently the dot product between their normalizations. A popular application is to quantify semantic similarity between high-dimensional objects by applying cosine-similarity to a learned low-dimensional feature embedding. This can work better but sometimes also worse than the unnormalized dot-product between embedded vectors in practice. To gain insight into this empirical observation, we study embeddings derived from regularized linear models, where closed-form solutions facilitate analytical insights. We derive analytically how cosine-similarity can yield arbitrary and therefore meaningless `similarities.' For some linear models the similarities are not even unique, while for others they are implicitly controlled by the regularization. We discuss implications beyond linear models: a combination of different regularizations are employed when learning deep models; these have implicit and unintended effects when taking cosine-similarities of the resulting embeddings, rendering results opaque and possibly arbitrary. Based on these insights, we caution against blindly using cosine-similarity and outline alternatives.
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
Parameter-Efficient Fine-Tuning with Discrete Fourier Transform
Low-rank adaptation~(LoRA) has recently gained much interest in fine-tuning foundation models. It effectively reduces the number of trainable parameters by incorporating low-rank matrices A and B to represent the weight change, i.e., Delta W=BA. Despite LoRA's progress, it faces storage challenges when handling extensive customization adaptations or larger base models. In this work, we aim to further compress trainable parameters by enjoying the powerful expressiveness of the Fourier transform. Specifically, we introduce FourierFT, which treats Delta W as a matrix in the spatial domain and learns only a small fraction of its spectral coefficients. With the trained spectral coefficients, we implement the inverse discrete Fourier transform to recover Delta W. Empirically, our FourierFT method shows comparable or better performance with fewer parameters than LoRA on various tasks, including natural language understanding, natural language generation, instruction tuning, and image classification. For example, when performing instruction tuning on the LLaMA2-7B model, FourierFT surpasses LoRA with only 0.064M trainable parameters, compared to LoRA's 33.5M. Our code is released at https://github.com/Chaos96/fourierft.
Diffusion Model for Dense Matching
The objective for establishing dense correspondence between paired images consists of two terms: a data term and a prior term. While conventional techniques focused on defining hand-designed prior terms, which are difficult to formulate, recent approaches have focused on learning the data term with deep neural networks without explicitly modeling the prior, assuming that the model itself has the capacity to learn an optimal prior from a large-scale dataset. The performance improvement was obvious, however, they often fail to address inherent ambiguities of matching, such as textureless regions, repetitive patterns, and large displacements. To address this, we propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms. Unlike previous approaches, this is accomplished by leveraging a conditional denoising diffusion model. DiffMatch consists of two main components: conditional denoising diffusion module and cost injection module. We stabilize the training process and reduce memory usage with a stage-wise training strategy. Furthermore, to boost performance, we introduce an inference technique that finds a better path to the accurate matching field. Our experimental results demonstrate significant performance improvements of our method over existing approaches, and the ablation studies validate our design choices along with the effectiveness of each component. Project page is available at https://ku-cvlab.github.io/DiffMatch/.
NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera Localization
This paper presents an end-to-end neural mapping method for camera localization, dubbed NeuMap, encoding a whole scene into a grid of latent codes, with which a Transformer-based auto-decoder regresses 3D coordinates of query pixels. State-of-the-art feature matching methods require each scene to be stored as a 3D point cloud with per-point features, consuming several gigabytes of storage per scene. While compression is possible, performance drops significantly at high compression rates. Conversely, coordinate regression methods achieve high compression by storing scene information in a neural network but suffer from reduced robustness. NeuMap combines the advantages of both approaches by utilizing 1) learnable latent codes for efficient scene representation and 2) a scene-agnostic Transformer-based auto-decoder to infer coordinates for query pixels. This scene-agnostic network design learns robust matching priors from large-scale data and enables rapid optimization of codes for new scenes while keeping the network weights fixed. Extensive evaluations on five benchmarks show that NeuMap significantly outperforms other coordinate regression methods and achieves comparable performance to feature matching methods while requiring a much smaller scene representation size. For example, NeuMap achieves 39.1% accuracy in the Aachen night benchmark with only 6MB of data, whereas alternative methods require 100MB or several gigabytes and fail completely under high compression settings. The codes are available at https://github.com/Tangshitao/NeuMap
LTX-Video: Realtime Video Latent Diffusion
We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.
Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models
In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compressionx2013which prioritizes the retention of features salient for machine perception over traditional human-centric criteriax2013has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception modelsx2013including image classification, image segmentation, speech recognition, and music source separationx2013under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: https://github.com/danjacobellis/MPQ.
Denoising Vision Transformers
We delve into a nuanced but significant challenge inherent to Vision Transformers (ViTs): feature maps of these models exhibit grid-like artifacts, which detrimentally hurt the performance of ViTs in downstream tasks. Our investigations trace this fundamental issue down to the positional embeddings at the input stage. To address this, we propose a novel noise model, which is universally applicable to all ViTs. Specifically, the noise model dissects ViT outputs into three components: a semantics term free from noise artifacts and two artifact-related terms that are conditioned on pixel locations. Such a decomposition is achieved by enforcing cross-view feature consistency with neural fields in a per-image basis. This per-image optimization process extracts artifact-free features from raw ViT outputs, providing clean features for offline applications. Expanding the scope of our solution to support online functionality, we introduce a learnable denoiser to predict artifact-free features directly from unprocessed ViT outputs, which shows remarkable generalization capabilities to novel data without the need for per-image optimization. Our two-stage approach, termed Denoising Vision Transformers (DVT), does not require re-training existing pre-trained ViTs and is immediately applicable to any Transformer-based architecture. We evaluate our method on a variety of representative ViTs (DINO, MAE, DeiT-III, EVA02, CLIP, DINOv2, DINOv2-reg). Extensive evaluations demonstrate that our DVT consistently and significantly improves existing state-of-the-art general-purpose models in semantic and geometric tasks across multiple datasets (e.g., +3.84 mIoU). We hope our study will encourage a re-evaluation of ViT design, especially regarding the naive use of positional embeddings.
STAT: Shrinking Transformers After Training
We present STAT: a simple algorithm to prune transformer models without any fine-tuning. STAT eliminates both attention heads and neurons from the network, while preserving accuracy by calculating a correction to the weights of the next layer. Each layer block in the network is compressed using a series of principled matrix factorizations that preserve the network structure. Our entire algorithm takes minutes to compress BERT, and less than three hours to compress models with 7B parameters using a single GPU. Using only several hundred data examples, STAT preserves the output of the network and improves upon existing gradient-free pruning methods. It is even competitive with methods that include significant fine-tuning. We demonstrate our method on both encoder and decoder architectures, including BERT, DistilBERT, and Llama-2 using benchmarks such as GLUE, Squad, WikiText2.
Conditional Automated Channel Pruning for Deep Neural Networks
Model compression aims to reduce the redundancy of deep networks to obtain compact models. Recently, channel pruning has become one of the predominant compression methods to deploy deep models on resource-constrained devices. Most channel pruning methods often use a fixed compression rate for all the layers of the model, which, however, may not be optimal. To address this issue, given a target compression rate for the whole model, one can search for the optimal compression rate for each layer. Nevertheless, these methods perform channel pruning for a specific target compression rate. When we consider multiple compression rates, they have to repeat the channel pruning process multiple times, which is very inefficient yet unnecessary. To address this issue, we propose a Conditional Automated Channel Pruning(CACP) method to obtain the compressed models with different compression rates through single channel pruning process. To this end, we develop a conditional model that takes an arbitrary compression rate as input and outputs the corresponding compressed model. In the experiments, the resultant models with different compression rates consistently outperform the models compressed by existing methods with a channel pruning process for each target compression rate.
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
We consider the problem of model compression for deep neural networks (DNNs) in the challenging one-shot/post-training setting, in which we are given an accurate trained model, and must compress it without any retraining, based only on a small amount of calibration input data. This problem has become popular in view of the emerging software and hardware support for executing models compressed via pruning and/or quantization with speedup, and well-performing solutions have been proposed independently for both compression approaches. In this paper, we introduce a new compression framework which covers both weight pruning and quantization in a unified setting, is time- and space-efficient, and considerably improves upon the practical performance of existing post-training methods. At the technical level, our approach is based on an exact and efficient realization of the classical Optimal Brain Surgeon (OBS) framework of [LeCun, Denker, and Solla, 1990] extended to also cover weight quantization at the scale of modern DNNs. From the practical perspective, our experimental results show that it can improve significantly upon the compression-accuracy trade-offs of existing post-training methods, and that it can enable the accurate compound application of both pruning and quantization in a post-training setting.
FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss
Recent advancements in local Implicit Neural Representation (INR) demonstrate its exceptional capability in handling images at various resolutions. However, frequency discrepancies between high-resolution (HR) and ground-truth images, especially at larger scales, result in significant artifacts and blurring in HR images. This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method aimed at enhancing detailed textures by ensuring spectral consistency throughout both training and inference. During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images, utilizing 2-Dimensional DCT bases and focusing dynamically on challenging frequencies. During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images, which is crucial for the model to generate high-frequency details from LR counterparts. Experimental results show that FreqINR, as a lightweight approach, achieves state-of-the-art performance compared to existing Arbitrary-scale Super-resolution methods and offers notable improvements in computational efficiency. The code for our method will be made publicly available.
High-Perceptual Quality JPEG Decoding via Posterior Sampling
JPEG is arguably the most popular image coding format, achieving high compression ratios via lossy quantization that may create visual artifacts degradation. Numerous attempts to remove these artifacts were conceived over the years, and common to most of these is the use of deterministic post-processing algorithms that optimize some distortion measure (e.g., PSNR, SSIM). In this paper we propose a different paradigm for JPEG artifact correction: Our method is stochastic, and the objective we target is high perceptual quality -- striving to obtain sharp, detailed and visually pleasing reconstructed images, while being consistent with the compressed input. These goals are achieved by training a stochastic conditional generator (conditioned on the compressed input), accompanied by a theoretically well-founded loss term, resulting in a sampler from the posterior distribution. Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency. We demonstrate our scheme's unique properties and its superiority to a variety of alternative methods on the FFHQ and ImageNet datasets.
MFQE 2.0: A New Approach for Multi-frame Quality Enhancement on Compressed Video
The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we firstly develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code is available at https://github.com/RyanXingQL/MFQEv2.0.git.
VidCompress: Memory-Enhanced Temporal Compression for Video Understanding in Large Language Models
Video-based multimodal large language models (Video-LLMs) possess significant potential for video understanding tasks. However, most Video-LLMs treat videos as a sequential set of individual frames, which results in insufficient temporal-spatial interaction that hinders fine-grained comprehension and difficulty in processing longer videos due to limited visual token capacity. To address these challenges, we propose VidCompress, a novel Video-LLM featuring memory-enhanced temporal compression. VidCompress employs a dual-compressor approach: a memory-enhanced compressor captures both short-term and long-term temporal relationships in videos and compresses the visual tokens using a multiscale transformer with a memory-cache mechanism, while a text-perceived compressor generates condensed visual tokens by utilizing Q-Former and integrating temporal contexts into query embeddings with cross attention. Experiments on several VideoQA datasets and comprehensive benchmarks demonstrate that VidCompress efficiently models complex temporal-spatial relations and significantly outperforms existing Video-LLMs.
When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding
Existing codecs are designed to eliminate intrinsic redundancies to create a compact representation for compression. However, strong external priors from Multimodal Large Language Models (MLLMs) have not been explicitly explored in video compression. Herein, we introduce a unified paradigm for Cross-Modality Video Coding (CMVC), which is a pioneering approach to explore multimodality representation and video generative models in video coding. Specifically, on the encoder side, we disentangle a video into spatial content and motion components, which are subsequently transformed into distinct modalities to achieve very compact representation by leveraging MLLMs. During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes that optimize video reconstruction quality for specific decoding requirements, including Text-Text-to-Video (TT2V) mode to ensure high-quality semantic information and Image-Text-to-Video (IT2V) mode to achieve superb perceptual consistency. In addition, we propose an efficient frame interpolation model for IT2V mode via Low-Rank Adaption (LoRA) tuning to guarantee perceptual quality, which allows the generated motion cues to behave smoothly. Experiments on benchmarks indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency. These results highlight potential directions for future research in video coding.
SPDER: Semiperiodic Damping-Enabled Object Representation
We present a neural network architecture designed to naturally learn a positional embedding and overcome the spectral bias towards lower frequencies faced by conventional implicit neural representation networks. Our proposed architecture, SPDER, is a simple MLP that uses an activation function composed of a sinusoidal multiplied by a sublinear function, called the damping function. The sinusoidal enables the network to automatically learn the positional embedding of an input coordinate while the damping passes on the actual coordinate value by preventing it from being projected down to within a finite range of values. Our results indicate that SPDERs speed up training by 10x and converge to losses 1,500-50,000x lower than that of the state-of-the-art for image representation. SPDER is also state-of-the-art in audio representation. The superior representation capability allows SPDER to also excel on multiple downstream tasks such as image super-resolution and video frame interpolation. We provide intuition as to why SPDER significantly improves fitting compared to that of other INR methods while requiring no hyperparameter tuning or preprocessing.
Your Transformer is Secretly Linear
This paper reveals a novel linear characteristic exclusive to transformer decoders, including models such as GPT, LLaMA, OPT, BLOOM and others. We analyze embedding transformations between sequential layers, uncovering a near-perfect linear relationship (Procrustes similarity score of 0.99). However, linearity decreases when the residual component is removed due to a consistently low output norm of the transformer layer. Our experiments show that removing or linearly approximating some of the most linear blocks of transformers does not affect significantly the loss or model performance. Moreover, in our pretraining experiments on smaller models we introduce a cosine-similarity-based regularization, aimed at reducing layer linearity. This regularization improves performance metrics on benchmarks like Tiny Stories and SuperGLUE and as well successfully decreases the linearity of the models. This study challenges the existing understanding of transformer architectures, suggesting that their operation may be more linear than previously assumed.
Optimal piecewise linear data compression for solutions of parametrized partial differential equations
Model order reduction has been extensively studied over the last two decades. Projection-based methods such as the Proper Orthogonal Decomposition and the Reduced Basis Method enjoy the important advantages of Galerkin methods in the derivation of the reduced problem, but are limited to linear data compression for which the reduced solution is sought as a linear combination of spatial modes. Nonlinear data compression must be used when the solution manifold is not embedded in a low-dimensional subspace. Early methods involve piecewise linear data compression, by constructing a dictionary of reduced-order models tailored to a partition of the solution manifold. In this work, we introduce the concept of optimal partition of the solution manifold in terms of normalized Kolmogorov widths, and prove that the optimal partitions can be found by means of a representative-based clustering algorithm using the sine dissimilarity measure on the solution manifold.
VcLLM: Video Codecs are Secretly Tensor Codecs
As the parameter size of large language models (LLMs) continues to expand, the need for a large memory footprint and high communication bandwidth have become significant bottlenecks for the training and inference of LLMs. To mitigate these bottlenecks, various tensor compression techniques have been proposed to reduce the data size, thereby alleviating memory requirements and communication pressure. Our research found that video codecs, despite being originally designed for compressing videos, show excellent efficiency when compressing various types of tensors. We demonstrate that video codecs can be versatile and general-purpose tensor codecs while achieving the state-of-the-art compression efficiency in various tasks. We further make use of the hardware video encoding and decoding module available on GPUs to create a framework capable of both inference and training with video codecs repurposed as tensor codecs. This greatly reduces the requirement for memory capacity and communication bandwidth, enabling training and inference of large models on consumer-grade GPUs.
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.
Length-Induced Embedding Collapse in Transformer-based Models
Text embeddings enable various applications, but their performance deteriorates on longer texts. In this paper, we find that the performance degradation is due to a phenomenon called Length Collapse, where longer text embeddings collapse into a narrow space. This collapse results in a distributional inconsistency between embeddings of different text lengths, ultimately hurting the performance of downstream tasks. Theoretically, by considering the self-attention mechanism inherently functions as a low-pass filter, we prove that long sequences increase the attenuation rate of the low-pass filter effect of the self-attention mechanism. With layers going deeper, excessive low-pass filtering causes the token signals to retain only their Direct-Current (DC) component, which means the input token feature maps will collapse into a narrow space, especially in long texts. Based on the above analysis, we propose to mitigate the undesirable length collapse limitation by introducing a temperature in softmax(), which achieves a higher low-filter attenuation rate. The tuning-free method, called TempScale, can be plugged into multiple transformer-based embedding models. Empirically, we demonstrate that TempScale can improve existing embedding models, especially on long text inputs, bringing up to 0.53% performance gains on 40 datasets from Massive Text Embedding Benchmark (MTEB) and 0.82% performance gains on 4 datasets from LongEmbed, which specifically focuses on long context retrieval.
CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level Continuous Sparsification
Mixed-precision quantization has been widely applied on deep neural networks (DNNs) as it leads to significantly better efficiency-accuracy tradeoffs compared to uniform quantization. Meanwhile, determining the exact precision of each layer remains challenging. Previous attempts on bit-level regularization and pruning-based dynamic precision adjustment during training suffer from noisy gradients and unstable convergence. In this work, we propose Continuous Sparsification Quantization (CSQ), a bit-level training method to search for mixed-precision quantization schemes with improved stability. CSQ stabilizes the bit-level mixed-precision training process with a bi-level gradual continuous sparsification on both the bit values of the quantized weights and the bit selection in determining the quantization precision of each layer. The continuous sparsification scheme enables fully-differentiable training without gradient approximation while achieving an exact quantized model in the end.A budget-aware regularization of total model size enables the dynamic growth and pruning of each layer's precision towards a mixed-precision quantization scheme of the desired size. Extensive experiments show CSQ achieves better efficiency-accuracy tradeoff than previous methods on multiple models and datasets.
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
Binarized Diffusion Model for Image Super-Resolution
Advanced diffusion models (DMs) perform impressively in image super-resolution (SR), but the high memory and computational costs hinder their deployment. Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating DMs. Nonetheless, due to the model structure and the multi-step iterative attribute of DMs, existing binarization methods result in significant performance degradation. In this paper, we introduce a novel binarized diffusion model, BI-DiffSR, for image SR. First, for the model structure, we design a UNet architecture optimized for binarization. We propose the consistent-pixel-downsample (CP-Down) and consistent-pixel-upsample (CP-Up) to maintain dimension consistent and facilitate the full-precision information transfer. Meanwhile, we design the channel-shuffle-fusion (CS-Fusion) to enhance feature fusion in skip connection. Second, for the activation difference across timestep, we design the timestep-aware redistribution (TaR) and activation function (TaA). The TaR and TaA dynamically adjust the distribution of activations based on different timesteps, improving the flexibility and representation alability of the binarized module. Comprehensive experiments demonstrate that our BI-DiffSR outperforms existing binarization methods. Code is released at: https://github.com/zhengchen1999/BI-DiffSR.
CodecNeRF: Toward Fast Encoding and Decoding, Compact, and High-quality Novel-view Synthesis
Neural Radiance Fields (NeRF) have achieved huge success in effectively capturing and representing 3D objects and scenes. However, to establish a ubiquitous presence in everyday media formats, such as images and videos, we need to fulfill three key objectives: 1. fast encoding and decoding time, 2. compact model sizes, and 3. high-quality renderings. Despite recent advancements, a comprehensive algorithm that adequately addresses all objectives has yet to be fully realized. In this work, we present CodecNeRF, a neural codec for NeRF representations, consisting of an encoder and decoder architecture that can generate a NeRF representation in a single forward pass. Furthermore, inspired by the recent parameter-efficient finetuning approaches, we propose a finetuning method to efficiently adapt the generated NeRF representations to a new test instance, leading to high-quality image renderings and compact code sizes. The proposed CodecNeRF, a newly suggested encoding-decoding-finetuning pipeline for NeRF, achieved unprecedented compression performance of more than 100x and remarkable reduction in encoding time while maintaining (or improving) the image quality on widely used 3D object datasets.
CAMixerSR: Only Details Need More "Attention"
To satisfy the rapidly increasing demands on the large image (2K-8K) super-resolution (SR), prevailing methods follow two independent tracks: 1) accelerate existing networks by content-aware routing, and 2) design better super-resolution networks via token mixer refining. Despite directness, they encounter unavoidable defects (e.g., inflexible route or non-discriminative processing) limiting further improvements of quality-complexity trade-off. To erase the drawbacks, we integrate these schemes by proposing a content-aware mixer (CAMixer), which assigns convolution for simple contexts and additional deformable window-attention for sparse textures. Specifically, the CAMixer uses a learnable predictor to generate multiple bootstraps, including offsets for windows warping, a mask for classifying windows, and convolutional attentions for endowing convolution with the dynamic property, which modulates attention to include more useful textures self-adaptively and improves the representation capability of convolution. We further introduce a global classification loss to improve the accuracy of predictors. By simply stacking CAMixers, we obtain CAMixerSR which achieves superior performance on large-image SR, lightweight SR, and omnidirectional-image SR.
Error Feedback Can Accurately Compress Preconditioners
Leveraging second-order information about the loss at the scale of deep networks is one of the main lines of approach for improving the performance of current optimizers for deep learning. Yet, existing approaches for accurate full-matrix preconditioning, such as Full-Matrix Adagrad (GGT) or Matrix-Free Approximate Curvature (M-FAC) suffer from massive storage costs when applied even to small-scale models, as they must store a sliding window of gradients, whose memory requirements are multiplicative in the model dimension. In this paper, we address this issue via a novel and efficient error-feedback technique that can be applied to compress preconditioners by up to two orders of magnitude in practice, without loss of convergence. Specifically, our approach compresses the gradient information via sparsification or low-rank compression before it is fed into the preconditioner, feeding the compression error back into future iterations. Experiments on deep neural networks show that this approach can compress full-matrix preconditioners to up to 99\% sparsity without accuracy loss, effectively removing the memory overhead of full-matrix preconditioners such as GGT and M-FAC. Our code is available at https://github.com/IST-DASLab/EFCP.
UPSCALE: Unconstrained Channel Pruning
As neural networks grow in size and complexity, inference speeds decline. To combat this, one of the most effective compression techniques -- channel pruning -- removes channels from weights. However, for multi-branch segments of a model, channel removal can introduce inference-time memory copies. In turn, these copies increase inference latency -- so much so that the pruned model can be slower than the unpruned model. As a workaround, pruners conventionally constrain certain channels to be pruned together. This fully eliminates memory copies but, as we show, significantly impairs accuracy. We now have a dilemma: Remove constraints but increase latency, or add constraints and impair accuracy. In response, our insight is to reorder channels at export time, (1) reducing latency by reducing memory copies and (2) improving accuracy by removing constraints. Using this insight, we design a generic algorithm UPSCALE to prune models with any pruning pattern. By removing constraints from existing pruners, we improve ImageNet accuracy for post-training pruned models by 2.1 points on average -- benefiting DenseNet (+16.9), EfficientNetV2 (+7.9), and ResNet (+6.2). Furthermore, by reordering channels, UPSCALE improves inference speeds by up to 2x over a baseline export.
Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction
Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.
ReALLM: A general framework for LLM compression and fine-tuning
We introduce ReALLM, a novel approach for compression and memory-efficient adaptation of pre-trained language models that encompasses most of the post-training quantization and fine-tuning methods for a budget of <4 bits. Pre-trained matrices are decomposed into a high-precision low-rank component and a vector-quantized latent representation (using an autoencoder). During the fine-tuning step, only the low-rank components are updated. Our results show that pre-trained matrices exhibit different patterns. ReALLM adapts the shape of the encoder (small/large embedding, high/low bit VQ, etc.) to each matrix. ReALLM proposes to represent each matrix with a small embedding on b bits and a neural decoder model D_phi with its weights on b_phi bits. The decompression of a matrix requires only one embedding and a single forward pass with the decoder. Our weight-only quantization algorithm yields the best results on language generation tasks (C4 and WikiText-2) for a budget of 3 bits without any training. With a budget of 2 bits, ReALLM achieves state-of-the art performance after fine-tuning on a small calibration dataset.
StructComp: Substituting propagation with Structural Compression in Training Graph Contrastive Learning
Graph contrastive learning (GCL) has become a powerful tool for learning graph data, but its scalability remains a significant challenge. In this work, we propose a simple yet effective training framework called Structural Compression (StructComp) to address this issue. Inspired by a sparse low-rank approximation on the diffusion matrix, StructComp trains the encoder with the compressed nodes. This allows the encoder not to perform any message passing during the training stage, and significantly reduces the number of sample pairs in the contrastive loss. We theoretically prove that the original GCL loss can be approximated with the contrastive loss computed by StructComp. Moreover, StructComp can be regarded as an additional regularization term for GCL models, resulting in a more robust encoder. Empirical studies on seven benchmark datasets show that StructComp greatly reduces the time and memory consumption while improving model performance compared to the vanilla GCL models and scalable training methods.
Neural Networks as Explicit Word-Based Rules
Filters of convolutional networks used in computer vision are often visualized as image patches that maximize the response of the filter. We use the same approach to interpret weight matrices in simple architectures for natural language processing tasks. We interpret a convolutional network for sentiment classification as word-based rules. Using the rule, we recover the performance of the original model.
CPTQuant - A Novel Mixed Precision Post-Training Quantization Techniques for Large Language Models
Large language models have transformed the comprehension and generation of natural language tasks, but they come with substantial memory and computational requirements. Quantization techniques have emerged as a promising avenue for addressing these challenges while preserving accuracy and making energy efficient. We propose CPTQuant, a comprehensive strategy that introduces correlation-based (CMPQ), pruning-based (PMPQ), and Taylor decomposition-based (TDMPQ) mixed precision techniques. CMPQ adapts the precision level based on canonical correlation analysis of different layers. PMPQ optimizes precision layer-wise based on their sensitivity to sparsity. TDMPQ modifies precision using Taylor decomposition to assess each layer's sensitivity to input perturbation. These strategies allocate higher precision to more sensitive layers while diminishing precision to robust layers. CPTQuant assesses the performance across BERT, OPT-125M, OPT-350M, OPT-1.3B, and OPT-2.7B. We demonstrate up to 4x compression and a 2x-fold increase in efficiency with minimal accuracy drop compared to HF中国镜像站 FP16. PMPQ stands out for achieving a considerably higher model compression. Sensitivity analyses across various LLMs show that the initial and final 30% of layers exhibit higher sensitivities than the remaining layers. PMPQ demonstrates an 11% higher compression ratio than other methods for classification tasks, while TDMPQ achieves a 30% greater compression ratio for language modeling tasks.
Encoding Multi-level Dynamics in Effect Heterogeneity Estimation
Earth Observation (EO) data are increasingly used in policy analysis by enabling granular estimation of treatment effects. However, a challenge in EO-based causal inference lies in balancing the trade-off between capturing fine-grained individual heterogeneity and broader contextual information. This paper introduces Multi-scale Concatenation, a family of composable procedures that transform arbitrary single-scale CATE estimation algorithms into multi-scale algorithms. We benchmark the performance of Multi-scale Concatenation on a CATE estimation pipeline combining Vision Transformer (ViT) models fine-tuned on satellite images to encode images of different scales with Causal Forests to obtain the final CATE estimate. We first perform simulation studies, showing how a multi-scale approach captures multi-level dynamics that single-scale ViT models fail to capture. We then apply the multi-scale method to two randomized controlled trials (RCTs) conducted in Peru and Uganda using Landsat satellite imagery. In the RCT analysis, the Rank Average Treatment Effect Ratio (RATE Ratio) measure is employed to assess performance without ground truth individual treatment effects. Results indicate that Multi-scale Concatenation improves the performance of deep learning models in EO-based CATE estimation without the complexity of designing new multi-scale architectures for a specific use case.
EControl: Fast Distributed Optimization with Compression and Error Control
Modern distributed training relies heavily on communication compression to reduce the communication overhead. In this work, we study algorithms employing a popular class of contractive compressors in order to reduce communication overhead. However, the naive implementation often leads to unstable convergence or even exponential divergence due to the compression bias. Error Compensation (EC) is an extremely popular mechanism to mitigate the aforementioned issues during the training of models enhanced by contractive compression operators. Compared to the effectiveness of EC in the data homogeneous regime, the understanding of the practicality and theoretical foundations of EC in the data heterogeneous regime is limited. Existing convergence analyses typically rely on strong assumptions such as bounded gradients, bounded data heterogeneity, or large batch accesses, which are often infeasible in modern machine learning applications. We resolve the majority of current issues by proposing EControl, a novel mechanism that can regulate error compensation by controlling the strength of the feedback signal. We prove fast convergence for EControl in standard strongly convex, general convex, and nonconvex settings without any additional assumptions on the problem or data heterogeneity. We conduct extensive numerical evaluations to illustrate the efficacy of our method and support our theoretical findings.
Semantically Structured Image Compression via Irregular Group-Based Decoupling
Image compression techniques typically focus on compressing rectangular images for human consumption, however, resulting in transmitting redundant content for downstream applications. To overcome this limitation, some previous works propose to semantically structure the bitstream, which can meet specific application requirements by selective transmission and reconstruction. Nevertheless, they divide the input image into multiple rectangular regions according to semantics and ignore avoiding information interaction among them, causing waste of bitrate and distorted reconstruction of region boundaries. In this paper, we propose to decouple an image into multiple groups with irregular shapes based on a customized group mask and compress them independently. Our group mask describes the image at a finer granularity, enabling significant bitrate saving by reducing the transmission of redundant content. Moreover, to ensure the fidelity of selective reconstruction, this paper proposes the concept of group-independent transform that maintain the independence among distinct groups. And we instantiate it by the proposed Group-Independent Swin-Block (GI Swin-Block). Experimental results demonstrate that our framework structures the bitstream with negligible cost, and exhibits superior performance on both visual quality and intelligent task supporting.
Perceptual Quality Improvement in Videoconferencing using Keyframes-based GAN
In the latest years, videoconferencing has taken a fundamental role in interpersonal relations, both for personal and business purposes. Lossy video compression algorithms are the enabling technology for videoconferencing, as they reduce the bandwidth required for real-time video streaming. However, lossy video compression decreases the perceived visual quality. Thus, many techniques for reducing compression artifacts and improving video visual quality have been proposed in recent years. In this work, we propose a novel GAN-based method for compression artifacts reduction in videoconferencing. Given that, in this context, the speaker is typically in front of the camera and remains the same for the entire duration of the transmission, we can maintain a set of reference keyframes of the person from the higher-quality I-frames that are transmitted within the video stream and exploit them to guide the visual quality improvement; a novel aspect of this approach is the update policy that maintains and updates a compact and effective set of reference keyframes. First, we extract multi-scale features from the compressed and reference frames. Then, our architecture combines these features in a progressive manner according to facial landmarks. This allows the restoration of the high-frequency details lost after the video compression. Experiments show that the proposed approach improves visual quality and generates photo-realistic results even with high compression rates. Code and pre-trained networks are publicly available at https://github.com/LorenzoAgnolucci/Keyframes-GAN.
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
In an effort to understand the meaning of the intermediate representations captured by deep networks, recent papers have tried to associate specific semantic concepts to individual neural network filter responses, where interesting correlations are often found, largely by focusing on extremal filter responses. In this paper, we show that this approach can favor easy-to-interpret cases that are not necessarily representative of the average behavior of a representation. A more realistic but harder-to-study hypothesis is that semantic representations are distributed, and thus filters must be studied in conjunction. In order to investigate this idea while enabling systematic visualization and quantification of multiple filter responses, we introduce the Net2Vec framework, in which semantic concepts are mapped to vectorial embeddings based on corresponding filter responses. By studying such embeddings, we are able to show that 1., in most cases, multiple filters are required to code for a concept, that 2., often filters are not concept specific and help encode multiple concepts, and that 3., compared to single filter activations, filter embeddings are able to better characterize the meaning of a representation and its relationship to other concepts.
Spatiotemporal Entropy Model is All You Need for Learned Video Compression
The framework of dominant learned video compression methods is usually composed of motion prediction modules as well as motion vector and residual image compression modules, suffering from its complex structure and error propagation problem. Approaches have been proposed to reduce the complexity by replacing motion prediction modules with implicit flow networks. Error propagation aware training strategy is also proposed to alleviate incremental reconstruction errors from previously decoded frames. Although these methods have brought some improvement, little attention has been paid to the framework itself. Inspired by the success of learned image compression through simplifying the framework with a single deep neural network, it is natural to expect a better performance in video compression via a simple yet appropriate framework. Therefore, we propose a framework to directly compress raw-pixel frames (rather than residual images), where no extra motion prediction module is required. Instead, an entropy model is used to estimate the spatiotemporal redundancy in a latent space rather than pixel level, which significantly reduces the complexity of the framework. Specifically, the whole framework is a compression module, consisting of a unified auto-encoder which produces identically distributed latents for all frames, and a spatiotemporal entropy estimation model to minimize the entropy of these latents. Experiments showed that the proposed method outperforms state-of-the-art (SOTA) performance under the metric of multiscale structural similarity (MS-SSIM) and achieves competitive results under the metric of PSNR.
Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression
In this paper, we study how to synthesize a dynamic reference from an external dictionary to perform conditional coding of the input image in the latent domain and how to learn the conditional latent synthesis and coding modules in an end-to-end manner. Our approach begins by constructing a universal image feature dictionary using a multi-stage approach involving modified spatial pyramid pooling, dimension reduction, and multi-scale feature clustering. For each input image, we learn to synthesize a conditioning latent by selecting and synthesizing relevant features from the dictionary, which significantly enhances the model's capability in capturing and exploring image source correlation. This conditional latent synthesis involves a correlation-based feature matching and alignment strategy, comprising a Conditional Latent Matching (CLM) module and a Conditional Latent Synthesis (CLS) module. The synthesized latent is then used to guide the encoding process, allowing for more efficient compression by exploiting the correlation between the input image and the reference dictionary. According to our theoretical analysis, the proposed conditional latent coding (CLC) method is robust to perturbations in the external dictionary samples and the selected conditioning latent, with an error bound that scales logarithmically with the dictionary size, ensuring stability even with large and diverse dictionaries. Experimental results on benchmark datasets show that our new method improves the coding performance by a large margin (up to 1.2 dB) with a very small overhead of approximately 0.5\% bits per pixel. Our code is publicly available at https://github.com/ydchen0806/CLC.
Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity
The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Lo\`eve transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.
VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration
Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on a single type of distortion, such as speech denoising or dereverberation. However, speech signals can be degraded by several different distortions simultaneously in the real world. It is thus important to extend speech restoration models to deal with multiple distortions. In this paper, we introduce VoiceFixer, a unified framework for high-fidelity speech restoration. VoiceFixer restores speech from multiple distortions (e.g., noise, reverberation, and clipping) and can expand degraded speech (e.g., noisy speech) with a low bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We design VoiceFixer based on (1) an analysis stage that predicts intermediate-level features from the degraded speech, and (2) a synthesis stage that generates waveform using a neural vocoder. Both objective and subjective evaluations show that VoiceFixer is effective on severely degraded speech, such as real-world historical speech recordings. Samples of VoiceFixer are available at https://haoheliu.github.io/voicefixer.
HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization
Sparse neural networks are a key factor in developing resource-efficient machine learning applications. We propose the novel and powerful sparse learning method Adaptive Regularized Training (ART) to compress dense into sparse networks. Instead of the commonly used binary mask during training to reduce the number of model weights, we inherently shrink weights close to zero in an iterative manner with increasing weight regularization. Our method compresses the pre-trained model knowledge into the weights of highest magnitude. Therefore, we introduce a novel regularization loss named HyperSparse that exploits the highest weights while conserving the ability of weight exploration. Extensive experiments on CIFAR and TinyImageNet show that our method leads to notable performance gains compared to other sparsification methods, especially in extremely high sparsity regimes up to 99.8 percent model sparsity. Additional investigations provide new insights into the patterns that are encoded in weights with high magnitudes.
RealViformer: Investigating Attention for Real-World Video Super-Resolution
In real-world video super-resolution (VSR), videos suffer from in-the-wild degradations and artifacts. VSR methods, especially recurrent ones, tend to propagate artifacts over time in the real-world setting and are more vulnerable than image super-resolution. This paper investigates the influence of artifacts on commonly used covariance-based attention mechanisms in VSR. Comparing the widely-used spatial attention, which computes covariance over space, versus the channel attention, we observe that the latter is less sensitive to artifacts. However, channel attention leads to feature redundancy, as evidenced by the higher covariance among output channels. As such, we explore simple techniques such as the squeeze-excite mechanism and covariance-based rescaling to counter the effects of high channel covariance. Based on our findings, we propose RealViformer. This channel-attention-based real-world VSR framework surpasses state-of-the-art on two real-world VSR datasets with fewer parameters and faster runtimes. The source code is available at https://github.com/Yuehan717/RealViformer.
FastBlend: a Powerful Model-Free Toolkit Making Video Stylization Easier
With the emergence of diffusion models and rapid development in image processing, it has become effortless to generate fancy images in tasks such as style transfer and image editing. However, these impressive image processing approaches face consistency issues in video processing. In this paper, we propose a powerful model-free toolkit called FastBlend to address the consistency problem for video processing. Based on a patch matching algorithm, we design two inference modes, including blending and interpolation. In the blending mode, FastBlend eliminates video flicker by blending the frames within a sliding window. Moreover, we optimize both computational efficiency and video quality according to different application scenarios. In the interpolation mode, given one or more keyframes rendered by diffusion models, FastBlend can render the whole video. Since FastBlend does not modify the generation process of diffusion models, it exhibits excellent compatibility. Extensive experiments have demonstrated the effectiveness of FastBlend. In the blending mode, FastBlend outperforms existing methods for video deflickering and video synthesis. In the interpolation mode, FastBlend surpasses video interpolation and model-based video processing approaches. The source codes have been released on GitHub.
Diffusion-based Extreme Image Compression with Compressed Feature Initialization
Diffusion-based extreme image compression methods have achieved impressive performance at extremely low bitrates. However, constrained by the iterative denoising process that starts from pure noise, these methods are limited in both fidelity and efficiency. To address these two issues, we present Relay Residual Diffusion Extreme Image Compression (RDEIC), which leverages compressed feature initialization and residual diffusion. Specifically, we first use the compressed latent features of the image with added noise, instead of pure noise, as the starting point to eliminate the unnecessary initial stages of the denoising process. Second, we design a novel relay residual diffusion that reconstructs the raw image by iteratively removing the added noise and the residual between the compressed and target latent features. Notably, our relay residual diffusion network seamlessly integrates pre-trained stable diffusion to leverage its robust generative capability for high-quality reconstruction. Third, we propose a fixed-step fine-tuning strategy to eliminate the discrepancy between the training and inference phases, further improving the reconstruction quality. Extensive experiments demonstrate that the proposed RDEIC achieves state-of-the-art visual quality and outperforms existing diffusion-based extreme image compression methods in both fidelity and efficiency. The source code will be provided in https://github.com/huai-chang/RDEIC.
Image Super-resolution Via Latent Diffusion: A Sampling-space Mixture Of Experts And Frequency-augmented Decoder Approach
The recent use of diffusion prior, enhanced by pre-trained text-image models, has markedly elevated the performance of image super-resolution (SR). To alleviate the huge computational cost required by pixel-based diffusion SR, latent-based methods utilize a feature encoder to transform the image and then implement the SR image generation in a compact latent space. Nevertheless, there are two major issues that limit the performance of latent-based diffusion. First, the compression of latent space usually causes reconstruction distortion. Second, huge computational cost constrains the parameter scale of the diffusion model. To counteract these issues, we first propose a frequency compensation module that enhances the frequency components from latent space to pixel space. The reconstruction distortion (especially for high-frequency information) can be significantly decreased. Then, we propose to use Sample-Space Mixture of Experts (SS-MoE) to achieve more powerful latent-based SR, which steadily improves the capacity of the model without a significant increase in inference costs. These carefully crafted designs contribute to performance improvements in largely explored 4x blind super-resolution benchmarks and extend to large magnification factors, i.e., 8x image SR benchmarks. The code is available at https://github.com/amandaluof/moe_sr.
Image Inpainting for Irregular Holes Using Partial Convolutions
Existing deep learning based image inpainting methods use a standard convolutional network over the corrupted image, using convolutional filter responses conditioned on both valid pixels as well as the substitute values in the masked holes (typically the mean value). This often leads to artifacts such as color discrepancy and blurriness. Post-processing is usually used to reduce such artifacts, but are expensive and may fail. We propose the use of partial convolutions, where the convolution is masked and renormalized to be conditioned on only valid pixels. We further include a mechanism to automatically generate an updated mask for the next layer as part of the forward pass. Our model outperforms other methods for irregular masks. We show qualitative and quantitative comparisons with other methods to validate our approach.
Pruning-aware Sparse Regularization for Network Pruning
Structural neural network pruning aims to remove the redundant channels in the deep convolutional neural networks (CNNs) by pruning the filters of less importance to the final output accuracy. To reduce the degradation of performance after pruning, many methods utilize the loss with sparse regularization to produce structured sparsity. In this paper, we analyze these sparsity-training-based methods and find that the regularization of unpruned channels is unnecessary. Moreover, it restricts the network's capacity, which leads to under-fitting. To solve this problem, we propose a novel pruning method, named MaskSparsity, with pruning-aware sparse regularization. MaskSparsity imposes the fine-grained sparse regularization on the specific filters selected by a pruning mask, rather than all the filters of the model. Before the fine-grained sparse regularization of MaskSparity, we can use many methods to get the pruning mask, such as running the global sparse regularization. MaskSparsity achieves 63.03%-FLOPs reduction on ResNet-110 by removing 60.34% of the parameters, with no top-1 accuracy loss on CIFAR-10. On ILSVRC-2012, MaskSparsity reduces more than 51.07% FLOPs on ResNet-50, with only a loss of 0.76% in the top-1 accuracy. The code is released at https://github.com/CASIA-IVA-Lab/MaskSparsity. Moreover, we have integrated the code of MaskSparity into a PyTorch pruning toolkit, EasyPruner, at https://gitee.com/casia_iva_engineer/easypruner.
AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising
Diffusion models have garnered significant interest from the community for their great generative ability across various applications. However, their typical multi-step sequential-denoising nature gives rise to high cumulative latency, thereby precluding the possibilities of parallel computation. To address this, we introduce AsyncDiff, a universal and plug-and-play acceleration scheme that enables model parallelism across multiple devices. Our approach divides the cumbersome noise prediction model into multiple components, assigning each to a different device. To break the dependency chain between these components, it transforms the conventional sequential denoising into an asynchronous process by exploiting the high similarity between hidden states in consecutive diffusion steps. Consequently, each component is facilitated to compute in parallel on separate devices. The proposed strategy significantly reduces inference latency while minimally impacting the generative quality. Specifically, for the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x speedup with negligible degradation and a 4.0x speedup with only a slight reduction of 0.38 in CLIP Score, on four NVIDIA A5000 GPUs. Our experiments also demonstrate that AsyncDiff can be readily applied to video diffusion models with encouraging performances. The code is available at https://github.com/czg1225/AsyncDiff.
Distributed bundle adjustment with block-based sparse matrix compression for super large scale datasets
We propose a distributed bundle adjustment (DBA) method using the exact Levenberg-Marquardt (LM) algorithm for super large-scale datasets. Most of the existing methods partition the global map to small ones and conduct bundle adjustment in the submaps. In order to fit the parallel framework, they use approximate solutions instead of the LM algorithm. However, those methods often give sub-optimal results. Different from them, we utilize the exact LM algorithm to conduct global bundle adjustment where the formation of the reduced camera system (RCS) is actually parallelized and executed in a distributed way. To store the large RCS, we compress it with a block-based sparse matrix compression format (BSMC), which fully exploits its block feature. The BSMC format also enables the distributed storage and updating of the global RCS. The proposed method is extensively evaluated and compared with the state-of-the-art pipelines using both synthetic and real datasets. Preliminary results demonstrate the efficient memory usage and vast scalability of the proposed method compared with the baselines. For the first time, we conducted parallel bundle adjustment using LM algorithm on a real datasets with 1.18 million images and a synthetic dataset with 10 million images (about 500 times that of the state-of-the-art LM-based BA) on a distributed computing system.
VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition
We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime.
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Adapting large-scale pretrained language models to downstream tasks via fine-tuning is the standard method for achieving state-of-the-art performance on NLP benchmarks. However, fine-tuning all weights of models with millions or billions of parameters is sample-inefficient, unstable in low-resource settings, and wasteful as it requires storing a separate copy of the model for each task. Recent work has developed parameter-efficient fine-tuning methods, but these approaches either still require a relatively large number of parameters or underperform standard fine-tuning. In this work, we propose Compacter, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work. Compacter accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers. Specifically, Compacter inserts task-specific weight matrices into a pretrained model's weights, which are computed efficiently as a sum of Kronecker products between shared "slow" weights and "fast" rank-one matrices defined per Compacter layer. By only training 0.047% of a pretrained model's parameters, Compacter performs on par with standard fine-tuning on GLUE and outperforms standard fine-tuning on SuperGLUE and low-resource settings. Our code is publicly available at~https://github.com/rabeehk/compacter.
Towards image compression with perfect realism at ultra-low bitrates
Image codecs are typically optimized to trade-off bitrate \vs distortion metrics. At low bitrates, this leads to compression artefacts which are easily perceptible, even when training with perceptual or adversarial losses. To improve image quality and remove dependency on the bitrate, we propose to decode with iterative diffusion models. We condition the decoding process on a vector-quantized image representation, as well as a global image description to provide additional context. We dub our model PerCo for 'perceptual compression', and compare it to state-of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate is more than an order of magnitude smaller than those considered in most prior work, compressing a 512x768 Kodak image with less than 153 bytes. Despite this ultra-low bitrate, our approach maintains the ability to reconstruct realistic images. We find that our model leads to reconstructions with state-of-the-art visual quality as measured by FID and KID. As predicted by rate-distortion-perception theory, visual quality is less dependent on the bitrate than previous methods.
A priori compression of convolutional neural networks for wave simulators
Convolutional neural networks are now seeing widespread use in a variety of fields, including image classification, facial and object recognition, medical imaging analysis, and many more. In addition, there are applications such as physics-informed simulators in which accurate forecasts in real time with a minimal lag are required. The present neural network designs include millions of parameters, which makes it difficult to install such complex models on devices that have limited memory. Compression techniques might be able to resolve these issues by decreasing the size of CNN models that are created by reducing the number of parameters that contribute to the complexity of the models. We propose a compressed tensor format of convolutional layer, a priori, before the training of the neural network. 3-way kernels or 2-way kernels in convolutional layers are replaced by one-way fiters. The overfitting phenomena will be reduced also. The time needed to make predictions or time required for training using the original Convolutional Neural Networks model would be cut significantly if there were fewer parameters to deal with. In this paper we present a method of a priori compressing convolutional neural networks for finite element (FE) predictions of physical data. Afterwards we validate our a priori compressed models on physical data from a FE model solving a 2D wave equation. We show that the proposed convolutinal compression technique achieves equivalent performance as classical convolutional layers with fewer trainable parameters and lower memory footprint.
HoloNets: Spectral Convolutions do extend to Directed Graphs
Within the graph learning community, conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs: Only there could the existence of a well-defined graph Fourier transform be guaranteed, so that information may be translated between spatial- and spectral domains. Here we show this traditional reliance on the graph Fourier transform to be superfluous and -- making use of certain advanced tools from complex analysis and spectral theory -- extend spectral convolutions to directed graphs. We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based. In order to thoroughly test the developed theory, we conduct experiments in real world settings, showcasing that directed spectral convolutional networks provide new state of the art results for heterophilic node classification on many datasets and -- as opposed to baselines -- may be rendered stable to resolution-scale varying topological perturbations.
Shortcut-V2V: Compression Framework for Video-to-Video Translation based on Temporal Redundancy Reduction
Video-to-video translation aims to generate video frames of a target domain from an input video. Despite its usefulness, the existing networks require enormous computations, necessitating their model compression for wide use. While there exist compression methods that improve computational efficiency in various image/video tasks, a generally-applicable compression method for video-to-video translation has not been studied much. In response, we present Shortcut-V2V, a general-purpose compression framework for video-to-video translation. Shourcut-V2V avoids full inference for every neighboring video frame by approximating the intermediate features of a current frame from those of the previous frame. Moreover, in our framework, a newly-proposed block called AdaBD adaptively blends and deforms features of neighboring frames, which makes more accurate predictions of the intermediate features possible. We conduct quantitative and qualitative evaluations using well-known video-to-video translation models on various tasks to demonstrate the general applicability of our framework. The results show that Shourcut-V2V achieves comparable performance compared to the original video-to-video translation model while saving 3.2-5.7x computational cost and 7.8-44x memory at test time.
FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
Convolution models with long filters have demonstrated state-of-the-art reasoning abilities in many long-sequence tasks but lag behind the most optimized Transformers in wall-clock time. A major bottleneck is the Fast Fourier Transform (FFT)--which allows long convolutions to run in O(N logN) time in sequence length N but has poor hardware utilization. In this paper, we study how to optimize the FFT convolution. We find two key bottlenecks: the FFT does not effectively use specialized matrix multiply units, and it incurs expensive I/O between layers of the memory hierarchy. In response, we propose FlashFFTConv. FlashFFTConv uses a matrix decomposition that computes the FFT using matrix multiply units and enables kernel fusion for long sequences, reducing I/O. We also present two sparse convolution algorithms--1) partial convolutions and 2) frequency-sparse convolutions--which can be implemented simply by skipping blocks in the matrix decomposition, enabling further opportunities for memory and compute savings. FlashFFTConv speeds up exact FFT convolutions by up to 7.93times over PyTorch and achieves up to 4.4times speedup end-to-end. Given the same compute budget, FlashFFTConv allows Hyena-GPT-s to achieve 2.3 points better perplexity on the PILE and M2-BERT-base to achieve 3.3 points higher GLUE score--matching models with twice the parameter count. FlashFFTConv also achieves 96.1% accuracy on Path-512, a high-resolution vision task where no model had previously achieved better than 50%. Furthermore, partial convolutions enable longer-sequence models--yielding the first DNA model that can process the longest human genes (2.3M base pairs)--and frequency-sparse convolutions speed up pretrained models while maintaining or improving model quality.
Transform Once: Efficient Operator Learning in Frequency Domain
Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.
Unified Visual Transformer Compression
Vision transformers (ViTs) have gained popularity recently. Even without customized image operators such as convolutions, ViTs can yield competitive performance when properly trained on massive data. However, the computational overhead of ViTs remains prohibitive, due to stacking multi-head self-attention modules and else. Compared to the vast literature and prevailing success in compressing convolutional neural networks, the study of Vision Transformer compression has also just emerged, and existing works focused on one or two aspects of compression. This paper proposes a unified ViT compression framework that seamlessly assembles three effective techniques: pruning, layer skipping, and knowledge distillation. We formulate a budget-constrained, end-to-end optimization framework, targeting jointly learning model weights, layer-wise pruning ratios/masks, and skip configurations, under a distillation loss. The optimization problem is then solved using the primal-dual algorithm. Experiments are conducted with several ViT variants, e.g. DeiT and T2T-ViT backbones on the ImageNet dataset, and our approach consistently outperforms recent competitors. For example, DeiT-Tiny can be trimmed down to 50\% of the original FLOPs almost without losing accuracy. Codes are available online:~https://github.com/VITA-Group/UVC.
MixLLM: LLM Quantization with Global Mixed-precision between Output-features and Highly-efficient System Design
Quantization has become one of the most effective methodologies to compress LLMs into smaller size. However, the existing quantization solutions still show limitations of either non-negligible accuracy drop or system inefficiency. In this paper, we make a comprehensive analysis of the general quantization principles on their effect to the triangle of accuracy, memory consumption and system efficiency. We propose MixLLM that explores the new optimization space of mixed-precision quantization between output features based on the insight that different output features matter differently in the model. MixLLM identifies the output features with high salience in the global view rather than within each single layer, effectively assigning the larger bit-width to output features that need it most to achieve good accuracy with low memory consumption. We present the sweet spot of quantization configuration of algorithm-system co-design that leads to high accuracy and system efficiency. To address the system challenge, we design the two-step dequantization to make use of the int8 Tensor Core easily and fast data type conversion to reduce dequantization overhead significantly, and present the software pipeline to overlap the memory access, dequantization and the MatMul to the best. Extensive experiments show that with only 10% more bits, the PPL increasement can be reduced from about 0.5 in SOTA to within 0.2 for Llama 3.1 70B, while on average MMLU-Pro improves by 0.93 over the SOTA of three popular models. In addition to its superior accuracy, MixLLM also achieves state-of-the-art system efficiency.
CMC-Bench: Towards a New Paradigm of Visual Signal Compression
Ultra-low bitrate image compression is a challenging and demanding topic. With the development of Large Multimodal Models (LMMs), a Cross Modality Compression (CMC) paradigm of Image-Text-Image has emerged. Compared with traditional codecs, this semantic-level compression can reduce image data size to 0.1\% or even lower, which has strong potential applications. However, CMC has certain defects in consistency with the original image and perceptual quality. To address this problem, we introduce CMC-Bench, a benchmark of the cooperative performance of Image-to-Text (I2T) and Text-to-Image (T2I) models for image compression. This benchmark covers 18,000 and 40,000 images respectively to verify 6 mainstream I2T and 12 T2I models, including 160,000 subjective preference scores annotated by human experts. At ultra-low bitrates, this paper proves that the combination of some I2T and T2I models has surpassed the most advanced visual signal codecs; meanwhile, it highlights where LMMs can be further optimized toward the compression task. We encourage LMM developers to participate in this test to promote the evolution of visual signal codec protocols.
Masked Images Are Counterfactual Samples for Robust Fine-tuning
Deep learning models are challenged by the distribution shift between the training data and test data. Recently, the large models pre-trained on diverse data have demonstrated unprecedented robustness to various distribution shifts. However, fine-tuning these models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness. Existing methods for tackling this trade-off do not explicitly address the OOD robustness problem. In this paper, based on causal analysis of the aforementioned problems, we propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model. Specifically, we mask either the semantics-related or semantics-unrelated patches of the images based on class activation map to break the spurious correlation, and refill the masked patches with patches from other images. The resulting counterfactual samples are used in feature-based distillation with the pre-trained model. Extensive experiments verify that regularizing the fine-tuning with the proposed masked images can achieve a better trade-off between ID and OOD performance, surpassing previous methods on the OOD performance. Our code is available at https://github.com/Coxy7/robust-finetuning.
NIRVANA: Neural Implicit Representations of Videos with Adaptive Networks and Autoregressive Patch-wise Modeling
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
Compressing Tabular Data via Latent Variable Estimation
Data used for analytics and machine learning often take the form of tables with categorical entries. We introduce a family of lossless compression algorithms for such data that proceed in four steps: (i) Estimate latent variables associated to rows and columns; (ii) Partition the table in blocks according to the row/column latents; (iii) Apply a sequential (e.g. Lempel-Ziv) coder to each of the blocks; (iv) Append a compressed encoding of the latents. We evaluate it on several benchmark datasets, and study optimal compression in a probabilistic model for that tabular data, whereby latent values are independent and table entries are conditionally independent given the latent values. We prove that the model has a well defined entropy rate and satisfies an asymptotic equipartition property. We also prove that classical compression schemes such as Lempel-Ziv and finite-state encoders do not achieve this rate. On the other hand, the latent estimation strategy outlined above achieves the optimal rate.
EMQ: Evolving Training-free Proxies for Automated Mixed Precision Quantization
Mixed-Precision Quantization~(MQ) can achieve a competitive accuracy-complexity trade-off for models. Conventional training-based search methods require time-consuming candidate training to search optimized per-layer bit-width configurations in MQ. Recently, some training-free approaches have presented various MQ proxies and significantly improve search efficiency. However, the correlation between these proxies and quantization accuracy is poorly understood. To address the gap, we first build the MQ-Bench-101, which involves different bit configurations and quantization results. Then, we observe that the existing training-free proxies perform weak correlations on the MQ-Bench-101. To efficiently seek superior proxies, we develop an automatic search of proxies framework for MQ via evolving algorithms. In particular, we devise an elaborate search space involving the existing proxies and perform an evolution search to discover the best correlated MQ proxy. We proposed a diversity-prompting selection strategy and compatibility screening protocol to avoid premature convergence and improve search efficiency. In this way, our Evolving proxies for Mixed-precision Quantization~(EMQ) framework allows the auto-generation of proxies without heavy tuning and expert knowledge. Extensive experiments on ImageNet with various ResNet and MobileNet families demonstrate that our EMQ obtains superior performance than state-of-the-art mixed-precision methods at a significantly reduced cost. The code will be released.
Hybrid Spectral Denoising Transformer with Guided Attention
In this paper, we present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising. Challenges in adapting transformer for HSI arise from the capabilities to tackle existing limitations of CNN-based methods in capturing the global and local spatial-spectral correlations while maintaining efficiency and flexibility. To address these issues, we introduce a hybrid approach that combines the advantages of both models with a Spatial-Spectral Separable Convolution (S3Conv), Guided Spectral Self-Attention (GSSA), and Self-Modulated Feed-Forward Network (SM-FFN). Our S3Conv works as a lightweight alternative to 3D convolution, which extracts more spatial-spectral correlated features while keeping the flexibility to tackle HSIs with an arbitrary number of bands. These features are then adaptively processed by GSSA which per-forms 3D self-attention across the spectral bands, guided by a set of learnable queries that encode the spectral signatures. This not only enriches our model with powerful capabilities for identifying global spectral correlations but also maintains linear complexity. Moreover, our SM-FFN proposes the self-modulation that intensifies the activations of more informative regions, which further strengthens the aggregated features. Extensive experiments are conducted on various datasets under both simulated and real-world noise, and it shows that our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead. Code is at https: //github.com/Zeqiang-Lai/HSDT.
Fourier Contour Embedding for Arbitrary-Shaped Text Detection
One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.
Scaling Laws in Patchification: An Image Is Worth 50,176 Tokens And More
Since the introduction of Vision Transformer (ViT), patchification has long been regarded as a de facto image tokenization approach for plain visual architectures. By compressing the spatial size of images, this approach can effectively shorten the token sequence and reduce the computational cost of ViT-like plain architectures. In this work, we aim to thoroughly examine the information loss caused by this patchification-based compressive encoding paradigm and how it affects visual understanding. We conduct extensive patch size scaling experiments and excitedly observe an intriguing scaling law in patchification: the models can consistently benefit from decreased patch sizes and attain improved predictive performance, until it reaches the minimum patch size of 1x1, i.e., pixel tokenization. This conclusion is broadly applicable across different vision tasks, various input scales, and diverse architectures such as ViT and the recent Mamba models. Moreover, as a by-product, we discover that with smaller patches, task-specific decoder heads become less critical for dense prediction. In the experiments, we successfully scale up the visual sequence to an exceptional length of 50,176 tokens, achieving a competitive test accuracy of 84.6% with a base-sized model on the ImageNet-1k benchmark. We hope this study can provide insights and theoretical foundations for future works of building non-compressive vision models. Code is available at https://github.com/wangf3014/Patch_Scaling.
CLOVER: Constrained Learning with Orthonormal Vectors for Eliminating Redundancy
To adapt a well-trained large model to downstream tasks, we propose constraining learning within its original latent space by leveraging linear combinations of its basis vectors. This approach ensures stable training without compromising the model's capabilities. Traditionally, constructing orthonormal bases from a matrix requires a transfer matrix, which significantly increases storage and computational overhead for parameters and feature maps. In this paper, we introduce Absorb and Decompose for Q, K, V, and O matrices, enabling their orthogonalization without the need for transfer matrices. Furthermore, the Absorb-Decompose operation eliminates redundant vectors, reducing the encoder attention parameters of Whisper-large-v3 by 46.42% without requiring additional training. For parameter-efficient and stable fine-tuning, we orthonormalized Q, K, V, and O and fine-tuned only the singular values, allowing efficient adaptation while constraining changes to the original latent space. When fine-tuning LLaMA-2-7B on eight commonsense reasoning datasets, our method outperforms LoRA by 5.4% and DoRA by 4.4%.
On filter design in deep convolutional neural network
The deep convolutional neural network (DCNN) in computer vision has given promising results. It is widely applied in many areas, from medicine, agriculture, self-driving car, biometric system, and almost all computer vision-based applications. Filters or weights are the critical elements responsible for learning in DCNN. Backpropagation has been the primary learning algorithm for DCNN and provides promising results, but the size and numbers of the filters remain hyper-parameters. Various studies have been done in the last decade on semi-supervised, self-supervised, and unsupervised methods and their properties. The effects of filter initialization, size-shape selection, and the number of filters on learning and optimization have not been investigated in a separate publication to collate all the options. Such attributes are often treated as hyper-parameters and lack mathematical understanding. Computer vision algorithms have many limitations in real-life applications, and understanding the learning process is essential to have some significant improvement. To the best of our knowledge, no separate investigation has been published discussing the filters; this is our primary motivation. This study focuses on arguments for choosing specific physical parameters of filters, initialization, and learning technic over scattered methods. The promising unsupervised approaches have been evaluated. Additionally, the limitations, current challenges, and future scope have been discussed in this paper.
DIVISION: Memory Efficient Training via Dual Activation Precision
Activation compressed training provides a solution towards reducing the memory cost of training deep neural networks~(DNNs). However, state-of-the-art work combines a search of quantization bit-width with the training, which makes the procedure complicated and less transparent. To this end, we propose a simple and effective method to compress DNN training. Our method is motivated by an instructive observation: DNN backward propagation mainly utilizes the low-frequency component (LFC) of the activation maps, while the majority of memory is for caching the high-frequency component (HFC) during the training. This indicates the HFC of activation maps is highly redundant and compressible during DNN training, which inspires our proposed Dual Activation Precision (DIVISION). During the training, DIVISION preserves the high-precision copy of LFC and compresses the HFC into a light-weight copy with low numerical precision. This can significantly reduce the memory cost without negatively affecting the precision of backward propagation such that DIVISION maintains competitive model accuracy. Experiment results show DIVISION has better comprehensive performance than state-of-the-art methods, including over 10x compression of activation maps and competitive training throughput, without loss of model accuracy.
MultiPruner: Balanced Structure Removal in Foundation Models
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
UMIFormer: Mining the Correlations between Similar Tokens for Multi-View 3D Reconstruction
In recent years, many video tasks have achieved breakthroughs by utilizing the vision transformer and establishing spatial-temporal decoupling for feature extraction. Although multi-view 3D reconstruction also faces multiple images as input, it cannot immediately inherit their success due to completely ambiguous associations between unstructured views. There is not usable prior relationship, which is similar to the temporally-coherence property in a video. To solve this problem, we propose a novel transformer network for Unstructured Multiple Images (UMIFormer). It exploits transformer blocks for decoupled intra-view encoding and designed blocks for token rectification that mine the correlation between similar tokens from different views to achieve decoupled inter-view encoding. Afterward, all tokens acquired from various branches are compressed into a fixed-size compact representation while preserving rich information for reconstruction by leveraging the similarities between tokens. We empirically demonstrate on ShapeNet and confirm that our decoupled learning method is adaptable for unstructured multiple images. Meanwhile, the experiments also verify our model outperforms existing SOTA methods by a large margin. Code will be available at https://github.com/GaryZhu1996/UMIFormer.
Metropolis Theorem and Its Applications in Single Image Detail Enhancement
Traditional image detail enhancement is local filter-based or global filter-based. In both approaches, the original image is first divided into the base layer and the detail layer, and then the enhanced image is obtained by amplifying the detail layer. Our method is different, and its innovation lies in the special way to get the image detail layer. The detail layer in our method is obtained by updating the residual features, and the updating mechanism is usually based on searching and matching similar patches. However, due to the diversity of image texture features, perfect matching is often not possible. In this paper, the process of searching and matching is treated as a thermodynamic process, where the Metropolis theorem can minimize the internal energy and get the global optimal solution of this task, that is, to find a more suitable feature for a better detail enhancement performance. Extensive experiments have proven that our algorithm can achieve better results in quantitative metrics testing and visual effects evaluation. The source code can be obtained from the link.
Live2Diff: Live Stream Translation via Uni-directional Attention in Video Diffusion Models
Large Language Models have shown remarkable efficacy in generating streaming data such as text and audio, thanks to their temporally uni-directional attention mechanism, which models correlations between the current token and previous tokens. However, video streaming remains much less explored, despite a growing need for live video processing. State-of-the-art video diffusion models leverage bi-directional temporal attention to model the correlations between the current frame and all the surrounding (i.e. including future) frames, which hinders them from processing streaming videos. To address this problem, we present Live2Diff, the first attempt at designing a video diffusion model with uni-directional temporal attention, specifically targeting live streaming video translation. Compared to previous works, our approach ensures temporal consistency and smoothness by correlating the current frame with its predecessors and a few initial warmup frames, without any future frames. Additionally, we use a highly efficient denoising scheme featuring a KV-cache mechanism and pipelining, to facilitate streaming video translation at interactive framerates. Extensive experiments demonstrate the effectiveness of the proposed attention mechanism and pipeline, outperforming previous methods in terms of temporal smoothness and/or efficiency.
Asymmetrically-powered Neural Image Compression with Shallow Decoders
Neural image compression methods have seen increasingly strong performance in recent years. However, they suffer orders of magnitude higher computational complexity compared to traditional codecs, which stands in the way of real-world deployment. This paper takes a step forward in closing this gap in decoding complexity by adopting shallow or even linear decoding transforms. To compensate for the resulting drop in compression performance, we exploit the often asymmetrical computation budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding. We theoretically formalize the intuition behind, and our experimental results establish a new frontier in the trade-off between rate-distortion and decoding complexity for neural image compression. Specifically, we achieve rate-distortion performance competitive with the established mean-scale hyperprior architecture of Minnen et al. (2018), while reducing the overall decoding complexity by 80 %, or over 90 % for the synthesis transform alone. Our code can be found at https://github.com/mandt-lab/shallow-ntc.
Implicit Maximum a Posteriori Filtering via Adaptive Optimization
Bayesian filtering approximates the true underlying behavior of a time-varying system by inverting an explicit generative model to convert noisy measurements into state estimates. This process typically requires either storage, inversion, and multiplication of large matrices or Monte Carlo estimation, neither of which are practical in high-dimensional state spaces such as the weight spaces of artificial neural networks. Here, we frame the standard Bayesian filtering problem as optimization over a time-varying objective. Instead of maintaining matrices for the filtering equations or simulating particles, we specify an optimizer that defines the Bayesian filter implicitly. In the linear-Gaussian setting, we show that every Kalman filter has an equivalent formulation using K steps of gradient descent. In the nonlinear setting, our experiments demonstrate that our framework results in filters that are effective, robust, and scalable to high-dimensional systems, comparing well against the standard toolbox of Bayesian filtering solutions. We suggest that it is easier to fine-tune an optimizer than it is to specify the correct filtering equations, making our framework an attractive option for high-dimensional filtering problems.
Frame-Recurrent Video Super-Resolution
Recent advances in video super-resolution have shown that convolutional neural networks combined with motion compensation are able to merge information from multiple low-resolution (LR) frames to generate high-quality images. Current state-of-the-art methods process a batch of LR frames to generate a single high-resolution (HR) frame and run this scheme in a sliding window fashion over the entire video, effectively treating the problem as a large number of separate multi-frame super-resolution tasks. This approach has two main weaknesses: 1) Each input frame is processed and warped multiple times, increasing the computational cost, and 2) each output frame is estimated independently conditioned on the input frames, limiting the system's ability to produce temporally consistent results. In this work, we propose an end-to-end trainable frame-recurrent video super-resolution framework that uses the previously inferred HR estimate to super-resolve the subsequent frame. This naturally encourages temporally consistent results and reduces the computational cost by warping only one image in each step. Furthermore, due to its recurrent nature, the proposed method has the ability to assimilate a large number of previous frames without increased computational demands. Extensive evaluations and comparisons with previous methods validate the strengths of our approach and demonstrate that the proposed framework is able to significantly outperform the current state of the art.
Improving Transformer-based Image Matching by Cascaded Capturing Spatially Informative Keypoints
Learning robust local image feature matching is a fundamental low-level vision task, which has been widely explored in the past few years. Recently, detector-free local feature matchers based on transformers have shown promising results, which largely outperform pure Convolutional Neural Network (CNN) based ones. But correlations produced by transformer-based methods are spatially limited to the center of source views' coarse patches, because of the costly attention learning. In this work, we rethink this issue and find that such matching formulation degrades pose estimation, especially for low-resolution images. So we propose a transformer-based cascade matching model -- Cascade feature Matching TRansformer (CasMTR), to efficiently learn dense feature correlations, which allows us to choose more reliable matching pairs for the relative pose estimation. Instead of re-training a new detector, we use a simple yet effective Non-Maximum Suppression (NMS) post-process to filter keypoints through the confidence map, and largely improve the matching precision. CasMTR achieves state-of-the-art performance in indoor and outdoor pose estimation as well as visual localization. Moreover, thorough ablations show the efficacy of the proposed components and techniques.
SignalTrain: Profiling Audio Compressors with Deep Neural Networks
In this work we present a data-driven approach for predicting the behavior of (i.e., profiling) a given non-linear audio signal processing effect (henceforth "audio effect"). Our objective is to learn a mapping function that maps the unprocessed audio to the processed by the audio effect to be profiled, using time-domain samples. To that aim, we employ a deep auto-encoder model that is conditioned on both time-domain samples and the control parameters of the target audio effect. As a test-case study, we focus on the offline profiling of two dynamic range compression audio effects, one software-based and the other analog. Compressors were chosen because they are a widely used and important set of effects and because their parameterized nonlinear time-dependent nature makes them a challenging problem for a system aiming to profile "general" audio effects. Results from our experimental procedure show that the primary functional and auditory characteristics of the compressors can be captured, however there is still sufficient audible noise to merit further investigation before such methods are applied to real-world audio processing workflows.
Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters
We introduce a novel approach for keypoint detection task that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches benchmark. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance and complexity.
Extreme Image Compression using Fine-tuned VQGANs
Recent advances in generative compression methods have demonstrated remarkable progress in enhancing the perceptual quality of compressed data, especially in scenarios with low bitrates. However, their efficacy and applicability to achieve extreme compression ratios (<0.05 bpp) remain constrained. In this work, we propose a simple yet effective coding framework by introducing vector quantization (VQ)--based generative models into the image compression domain. The main insight is that the codebook learned by the VQGAN model yields a strong expressive capacity, facilitating efficient compression of continuous information in the latent space while maintaining reconstruction quality. Specifically, an image can be represented as VQ-indices by finding the nearest codeword, which can be encoded using lossless compression methods into bitstreams. We propose clustering a pre-trained large-scale codebook into smaller codebooks through the K-means algorithm, yielding variable bitrates and different levels of reconstruction quality within the coding framework. Furthermore, we introduce a transformer to predict lost indices and restore images in unstable environments. Extensive qualitative and quantitative experiments on various benchmark datasets demonstrate that the proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics and human perception at extremely low bitrates (le 0.04 bpp). Remarkably, even with the loss of up to 20% of indices, the images can be effectively restored with minimal perceptual loss.
Tuning-Free Long Video Generation via Global-Local Collaborative Diffusion
Creating high-fidelity, coherent long videos is a sought-after aspiration. While recent video diffusion models have shown promising potential, they still grapple with spatiotemporal inconsistencies and high computational resource demands. We propose GLC-Diffusion, a tuning-free method for long video generation. It models the long video denoising process by establishing denoising trajectories through Global-Local Collaborative Denoising to ensure overall content consistency and temporal coherence between frames. Additionally, we introduce a Noise Reinitialization strategy which combines local noise shuffling with frequency fusion to improve global content consistency and visual diversity. Further, we propose a Video Motion Consistency Refinement (VMCR) module that computes the gradient of pixel-wise and frequency-wise losses to enhance visual consistency and temporal smoothness. Extensive experiments, including quantitative and qualitative evaluations on videos of varying lengths (e.g., 3\times and 6\times longer), demonstrate that our method effectively integrates with existing video diffusion models, producing coherent, high-fidelity long videos superior to previous approaches.
Efficient neural networks for real-time modeling of analog dynamic range compression
Deep learning approaches have demonstrated success in modeling analog audio effects. Nevertheless, challenges remain in modeling more complex effects that involve time-varying nonlinear elements, such as dynamic range compressors. Existing neural network approaches for modeling compression either ignore the device parameters, do not attain sufficient accuracy, or otherwise require large noncausal models prohibiting real-time operation. In this work, we propose a modification to temporal convolutional networks (TCNs) enabling greater efficiency without sacrificing performance. By utilizing very sparse convolutional kernels through rapidly growing dilations, our model attains a significant receptive field using fewer layers, reducing computation. Through a detailed evaluation we demonstrate our efficient and causal approach achieves state-of-the-art performance in modeling the analog LA-2A, is capable of real-time operation on CPU, and only requires 10 minutes of training data.
IterativePFN: True Iterative Point Cloud Filtering
The quality of point clouds is often limited by noise introduced during their capture process. Consequently, a fundamental 3D vision task is the removal of noise, known as point cloud filtering or denoising. State-of-the-art learning based methods focus on training neural networks to infer filtered displacements and directly shift noisy points onto the underlying clean surfaces. In high noise conditions, they iterate the filtering process. However, this iterative filtering is only done at test time and is less effective at ensuring points converge quickly onto the clean surfaces. We propose IterativePFN (iterative point cloud filtering network), which consists of multiple IterationModules that model the true iterative filtering process internally, within a single network. We train our IterativePFN network using a novel loss function that utilizes an adaptive ground truth target at each iteration to capture the relationship between intermediate filtering results during training. This ensures that the filtered results converge faster to the clean surfaces. Our method is able to obtain better performance compared to state-of-the-art methods. The source code can be found at: https://github.com/ddsediri/IterativePFN.
Align-and-Attend Network for Globally and Locally Coherent Video Inpainting
We propose a novel feed-forward network for video inpainting. We use a set of sampled video frames as the reference to take visible contents to fill the hole of a target frame. Our video inpainting network consists of two stages. The first stage is an alignment module that uses computed homographies between the reference frames and the target frame. The visible patches are then aggregated based on the frame similarity to fill in the target holes roughly. The second stage is a non-local attention module that matches the generated patches with known reference patches (in space and time) to refine the previous global alignment stage. Both stages consist of large spatial-temporal window size for the reference and thus enable modeling long-range correlations between distant information and the hole regions. Therefore, even challenging scenes with large or slowly moving holes can be handled, which have been hardly modeled by existing flow-based approach. Our network is also designed with a recurrent propagation stream to encourage temporal consistency in video results. Experiments on video object removal demonstrate that our method inpaints the holes with globally and locally coherent contents.
CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes
Recently, 3D Gaussian Splatting (3DGS) has revolutionized radiance field reconstruction, manifesting efficient and high-fidelity novel view synthesis. However, accurately representing surfaces, especially in large and complex scenarios, remains a significant challenge due to the unstructured nature of 3DGS. In this paper, we present CityGaussianV2, a novel approach for large-scale scene reconstruction that addresses critical challenges related to geometric accuracy and efficiency. Building on the favorable generalization capabilities of 2D Gaussian Splatting (2DGS), we address its convergence and scalability issues. Specifically, we implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence. To scale up, we introduce an elongation filter that mitigates Gaussian count explosion caused by 2DGS degeneration. Furthermore, we optimize the CityGaussian pipeline for parallel training, achieving up to 10times compression, at least 25% savings in training time, and a 50% decrease in memory usage. We also established standard geometry benchmarks under large-scale scenes. Experimental results demonstrate that our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs. The project page is available at https://dekuliutesla.github.io/CityGaussianV2/.
HarmoniCa: Harmonizing Training and Inference for Better Feature Cache in Diffusion Transformer Acceleration
Diffusion Transformers (DiTs) have gained prominence for outstanding scalability and extraordinary performance in generative tasks. However, their considerable inference costs impede practical deployment. The feature cache mechanism, which involves storing and retrieving redundant computations across timesteps, holds promise for reducing per-step inference time in diffusion models. Most existing caching methods for DiT are manually designed. Although the learning-based approach attempts to optimize strategies adaptively, it suffers from discrepancies between training and inference, which hampers both the performance and acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies primarily stem from two aspects: (1) Prior Timestep Disregard, where training ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch, where the training target (align predicted noise in each timestep) deviates from the goal of inference (generate the high-quality image). To alleviate these discrepancies, we propose HarmoniCa, a novel method that Harmonizes training and inference with a novel learning-based Caching framework built upon Step-Wise Denoising Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process, enabling the model to leverage information from prior timesteps during training, similar to the way it operates during inference. Furthermore, we design IEPO, which integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature. Therefore, IEPO helps balance final image quality and cache utilization, resolving the issue of training that only considers the impact of cache usage on the predicted output at each timestep.
CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weights of both the 3D Causal VAE and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
Real Time Speech Enhancement in the Waveform Domain
We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities. We perform evaluations on several standard benchmarks, both using objective metrics and human judgements. The proposed model matches state-of-the-art performance of both causal and non causal methods while working directly on the raw waveform.
Sigma-Delta and Distributed Noise-Shaping Quantization Methods for Random Fourier Features
We propose the use of low bit-depth Sigma-Delta and distributed noise-shaping methods for quantizing the Random Fourier features (RFFs) associated with shift-invariant kernels. We prove that our quantized RFFs -- even in the case of 1-bit quantization -- allow a high accuracy approximation of the underlying kernels, and the approximation error decays at least polynomially fast as the dimension of the RFFs increases. We also show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy. Namely, the approximation error now decays exponentially as a function of the bits used. Moreover, we empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
Go Wider Instead of Deeper
More transformer blocks with residual connections have recently achieved impressive results on various tasks. To achieve better performance with fewer trainable parameters, recent methods are proposed to go shallower by parameter sharing or model compressing along with the depth. However, weak modeling capacity limits their performance. Contrastively, going wider by inducing more trainable matrixes and parameters would produce a huge model requiring advanced parallelism to train and inference. In this paper, we propose a parameter-efficient framework, going wider instead of deeper. Specially, following existing works, we adapt parameter sharing to compress along depth. But, such deployment would limit the performance. To maximize modeling capacity, we scale along model width by replacing feed-forward network (FFN) with mixture-of-experts (MoE). Across transformer blocks, instead of sharing normalization layers, we propose to use individual layernorms to transform various semantic representations in a more parameter-efficient way. To evaluate our plug-and-run framework, we design WideNet and conduct comprehensive experiments on popular computer vision and natural language processing benchmarks. On ImageNet-1K, our best model outperforms Vision Transformer (ViT) by 1.5% with 0.72 times trainable parameters. Using 0.46 times and 0.13 times parameters, our WideNet can still surpass ViT and ViT-MoE by 0.8% and 2.1%, respectively. On four natural language processing datasets, WideNet outperforms ALBERT by 1.8% on average and surpass BERT using factorized embedding parameterization by 0.8% with fewer parameters.
CoSeR: Bridging Image and Language for Cognitive Super-Resolution
Existing super-resolution (SR) models primarily focus on restoring local texture details, often neglecting the global semantic information within the scene. This oversight can lead to the omission of crucial semantic details or the introduction of inaccurate textures during the recovery process. In our work, we introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images. We achieve this by marrying image appearance and language understanding to generate a cognitive embedding, which not only activates prior information from large text-to-image diffusion models but also facilitates the generation of high-quality reference images to optimize the SR process. To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention", consolidating all conditional information into a single module. Consequently, our method successfully restores semantically correct and photorealistic details, demonstrating state-of-the-art performance across multiple benchmarks. Code: https://github.com/VINHYU/CoSeR
GQSA: Group Quantization and Sparsity for Accelerating Large Language Model Inference
Model compression has emerged as a mainstream solution to reduce memory usage and computational overhead. This paper presents Group Quantization and Sparse Acceleration (GQSA), a novel compression technique tailored for LLMs. Traditional methods typically focus exclusively on either quantization or sparsification, but relying on a single strategy often results in significant performance loss at high compression rates. In contrast, GQSA integrates quantization and sparsification in a tightly coupled manner, leveraging GPU-friendly structured group sparsity and quantization for efficient acceleration. Building upon system-algorithm co-design principles, we propose a two-stage sparse optimization strategy that ensures the performance superiority of the compressed model. On the engine side, we introduce a "task-centric" parallel strategy, which, to the best of our knowledge, is the first application in the domain of sparse computing. Compared to the traditional 2:4 sparse method, the GQSA offers a more flexible and adjustable sparsity rate, as well as a higher weight compression rate, and is efficiently compatible with weight-only quantization methods. Experimental results demonstrate that, under the GQSA W4S50% compression setting, the model's accuracy surpasses that of both 2:4 pruning and W2 quantization. Furthermore, at the inference level, GQSA outperforms W2 by 1.26times and 2:4 pruning by 2.35times in terms of speed.
Unified Data-Free Compression: Pruning and Quantization without Fine-Tuning
Structured pruning and quantization are promising approaches for reducing the inference time and memory footprint of neural networks. However, most existing methods require the original training dataset to fine-tune the model. This not only brings heavy resource consumption but also is not possible for applications with sensitive or proprietary data due to privacy and security concerns. Therefore, a few data-free methods are proposed to address this problem, but they perform data-free pruning and quantization separately, which does not explore the complementarity of pruning and quantization. In this paper, we propose a novel framework named Unified Data-Free Compression(UDFC), which performs pruning and quantization simultaneously without any data and fine-tuning process. Specifically, UDFC starts with the assumption that the partial information of a damaged(e.g., pruned or quantized) channel can be preserved by a linear combination of other channels, and then derives the reconstruction form from the assumption to restore the information loss due to compression. Finally, we formulate the reconstruction error between the original network and its compressed network, and theoretically deduce the closed-form solution. We evaluate the UDFC on the large-scale image classification task and obtain significant improvements over various network architectures and compression methods. For example, we achieve a 20.54% accuracy improvement on ImageNet dataset compared to SOTA method with 30% pruning ratio and 6-bit quantization on ResNet-34.
Too Large; Data Reduction for Vision-Language Pre-Training
This paper examines the problems of severe image-text misalignment and high redundancy in the widely-used large-scale Vision-Language Pre-Training (VLP) datasets. To address these issues, we propose an efficient and straightforward Vision-Language learning algorithm called TL;DR, which aims to compress the existing large VLP data into a small, high-quality set. Our approach consists of two major steps. First, a codebook-based encoder-decoder captioner is developed to select representative samples. Second, a new caption is generated to complement the original captions for selected samples, mitigating the text-image misalignment problem while maintaining uniqueness. As the result, TL;DR enables us to reduce the large dataset into a small set of high-quality data, which can serve as an alternative pre-training dataset. This algorithm significantly speeds up the time-consuming pretraining process. Specifically, TL;DR can compress the mainstream VLP datasets at a high ratio, e.g., reduce well-cleaned CC3M dataset from 2.82M to 0.67M (sim24\%) and noisy YFCC15M from 15M to 2.5M (sim16.7\%). Extensive experiments with three popular VLP models over seven downstream tasks show that VLP model trained on the compressed dataset provided by TL;DR can perform similar or even better results compared with training on the full-scale dataset. The code will be made available at https://github.com/showlab/datacentric.vlp.
Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos
Video semantic segmentation (VSS) is a computationally expensive task due to the per-frame prediction for videos of high frame rates. In recent work, compact models or adaptive network strategies have been proposed for efficient VSS. However, they did not consider a crucial factor that affects the computational cost from the input side: the input resolution. In this paper, we propose an altering resolution framework called AR-Seg for compressed videos to achieve efficient VSS. AR-Seg aims to reduce the computational cost by using low resolution for non-keyframes. To prevent the performance degradation caused by downsampling, we design a Cross Resolution Feature Fusion (CReFF) module, and supervise it with a novel Feature Similarity Training (FST) strategy. Specifically, CReFF first makes use of motion vectors stored in a compressed video to warp features from high-resolution keyframes to low-resolution non-keyframes for better spatial alignment, and then selectively aggregates the warped features with local attention mechanism. Furthermore, the proposed FST supervises the aggregated features with high-resolution features through an explicit similarity loss and an implicit constraint from the shared decoding layer. Extensive experiments on CamVid and Cityscapes show that AR-Seg achieves state-of-the-art performance and is compatible with different segmentation backbones. On CamVid, AR-Seg saves 67% computational cost (measured in GFLOPs) with the PSPNet18 backbone while maintaining high segmentation accuracy. Code: https://github.com/THU-LYJ-Lab/AR-Seg.
Rank-adaptive spectral pruning of convolutional layers during training
The computing cost and memory demand of deep learning pipelines have grown fast in recent years and thus a variety of pruning techniques have been developed to reduce model parameters. The majority of these techniques focus on reducing inference costs by pruning the network after a pass of full training. A smaller number of methods address the reduction of training costs, mostly based on compressing the network via low-rank layer factorizations. Despite their efficiency for linear layers, these methods fail to effectively handle convolutional filters. In this work, we propose a low-parametric training method that factorizes the convolutions into tensor Tucker format and adaptively prunes the Tucker ranks of the convolutional kernel during training. Leveraging fundamental results from geometric integration theory of differential equations on tensor manifolds, we obtain a robust training algorithm that provably approximates the full baseline performance and guarantees loss descent. A variety of experiments against the full model and alternative low-rank baselines are implemented, showing that the proposed method drastically reduces the training costs, while achieving high performance, comparable to or better than the full baseline, and consistently outperforms competing low-rank approaches.
LORD: Low Rank Decomposition Of Monolingual Code LLMs For One-Shot Compression
Low Rank Decomposition of matrix - splitting a large matrix into a product of two smaller matrix offers a means for compression that reduces the parameters of a model without sparsification, and hence delivering more speedup on modern hardware. Moreover, unlike quantization, the compressed linear layers remain fully differentiable and all the parameters trainable, while being able to leverage the existing highly efficient kernels over floating point matrices. We study the potential to compress Large Language Models (LLMs) for monolingual Code generation via Low Rank Decomposition (LoRD) and observe that ranks for the linear layers in these models can be reduced by upto 39.58% with less than 1% increase in perplexity. We then use Low Rank Decomposition (LoRD) to compress StarCoder 16B to 13.2B parameter with no drop and to 12.3B with minimal drop in HumanEval Pass@1 score, in less than 10 minutes on a single A100. The compressed models speeds up inference by up to 22.35% with just a single line of change in code over huggingface's implementation with pytorch backend. Low Rank Decomposition (LoRD) models remain compatible with state of the art near-lossless quantization method such as SpQR, which allows leveraging further compression gains of quantization. Lastly, QLoRA over Low Rank Decomposition (LoRD) model further reduces memory requirements by as much as 21.2% over vanilla QLoRA while offering similar gains from parameter efficient fine tuning. Our work shows Low Rank Decomposition (LoRD) as a promising new paradigm for LLM compression.
Early Exit or Not: Resource-Efficient Blind Quality Enhancement for Compressed Images
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts. Recently, extensive approaches have been proposed to reduce image compression artifacts at the decoder side; however, they require a series of architecture-identical models to process images with different quality, which are inefficient and resource-consuming. Besides, it is common in practice that compressed images are with unknown quality and it is intractable for existing approaches to select a suitable model for blind quality enhancement. In this paper, we propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images. Specifically, our approach blindly and progressively enhances the quality of compressed images through a dynamic deep neural network (DNN), in which an early-exit strategy is embedded. Then, our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images. Consequently, slight artifacts can be removed in a simpler and faster process, while the severe artifacts can be further removed in a more elaborate process. Extensive experiments demonstrate that our RBQE approach achieves state-of-the-art performance in terms of both blind quality enhancement and resource efficiency. The code is available at https://github.com/RyanXingQL/RBQE.
Rethinking Large-scale Dataset Compression: Shifting Focus From Labels to Images
Dataset distillation and dataset pruning are two prominent techniques for compressing datasets to improve computational and storage efficiency. Despite their overlapping objectives, these approaches are rarely compared directly. Even within each field, the evaluation protocols are inconsistent across various methods, which complicates fair comparisons and hinders reproducibility. Considering these limitations, we introduce in this paper a benchmark that equitably evaluates methodologies across both distillation and pruning literatures. Notably, our benchmark reveals that in the mainstream dataset distillation setting for large-scale datasets, which heavily rely on soft labels from pre-trained models, even randomly selected subsets can achieve surprisingly competitive performance. This finding suggests that an overemphasis on soft labels may be diverting attention from the intrinsic value of the image data, while also imposing additional burdens in terms of generation, storage, and application. To address these issues, we propose a new framework for dataset compression, termed Prune, Combine, and Augment (PCA), which focuses on leveraging image data exclusively, relies solely on hard labels for evaluation, and achieves state-of-the-art performance in this setup. By shifting the emphasis back to the images, our benchmark and PCA framework pave the way for more balanced and accessible techniques in dataset compression research. Our code is available at: https://github.com/ArmandXiao/Rethinking-Dataset-Compression
FITS: Modeling Time Series with 10k Parameters
In this paper, we introduce FITS, a lightweight yet powerful model for time series analysis. Unlike existing models that directly process raw time-domain data, FITS operates on the principle that time series can be manipulated through interpolation in the complex frequency domain. By discarding high-frequency components with negligible impact on time series data, FITS achieves performance comparable to state-of-the-art models for time series forecasting and anomaly detection tasks, while having a remarkably compact size of only approximately 10k parameters. Such a lightweight model can be easily trained and deployed in edge devices, creating opportunities for various applications. The code is available in: https://github.com/VEWOXIC/FITS
Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach that leverages the readily learned capacity of pixel level image diffusion model to capture spatial information for video generation. To accomplish this goal, we design an efficient architecture by inflating the weightings of the text-to-image SR model into our video generation framework. Additionally, we incorporate a temporal adapter to ensure temporal coherence across video frames. We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality. Empirical evaluation, both quantitative and qualitative, on the Shutterstock video dataset, demonstrates that our approach is able to perform text-to-video SR generation with good visual quality and temporal consistency. To evaluate temporal coherence, we also present visualizations in video format in https://drive.google.com/drive/folders/1YVc-KMSJqOrEUdQWVaI-Yfu8Vsfu_1aO?usp=sharing .
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show how it helps to enhance the flexibility of GNNs while alleviating the smoothness and amplification issues of existing models. Essentially, we show that the extensively studied spectral graph convolutions with learnable polynomial filters are constrained variants of this formulation, and releasing these constraints enables our model to express the desired decomposition and filtering simultaneously. Based on this generalized framework, we develop models that are simple in implementation but achieve significant improvements and computational efficiency on a variety of graph learning tasks. Code is available at https://github.com/qslim/PDF.
Performance-aware Approximation of Global Channel Pruning for Multitask CNNs
Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.
FiTv2: Scalable and Improved Flexible Vision Transformer for Diffusion Model
Nature is infinitely resolution-free. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To address this limitation, we conceptualize images as sequences of tokens with dynamic sizes, rather than traditional methods that perceive images as fixed-resolution grids. This perspective enables a flexible training strategy that seamlessly accommodates various aspect ratios during both training and inference, thus promoting resolution generalization and eliminating biases introduced by image cropping. On this basis, we present the Flexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios. We further upgrade the FiT to FiTv2 with several innovative designs, includingthe Query-Key vector normalization, the AdaLN-LoRA module, a rectified flow scheduler, and a Logit-Normal sampler. Enhanced by a meticulously adjusted network structure, FiTv2 exhibits 2times convergence speed of FiT. When incorporating advanced training-free extrapolation techniques, FiTv2 demonstrates remarkable adaptability in both resolution extrapolation and diverse resolution generation. Additionally, our exploration of the scalability of the FiTv2 model reveals that larger models exhibit better computational efficiency. Furthermore, we introduce an efficient post-training strategy to adapt a pre-trained model for the high-resolution generation. Comprehensive experiments demonstrate the exceptional performance of FiTv2 across a broad range of resolutions. We have released all the codes and models at https://github.com/whlzy/FiT to promote the exploration of diffusion transformer models for arbitrary-resolution image generation.
SpotDiffusion: A Fast Approach For Seamless Panorama Generation Over Time
Generating high-resolution images with generative models has recently been made widely accessible by leveraging diffusion models pre-trained on large-scale datasets. Various techniques, such as MultiDiffusion and SyncDiffusion, have further pushed image generation beyond training resolutions, i.e., from square images to panorama, by merging multiple overlapping diffusion paths or employing gradient descent to maintain perceptual coherence. However, these methods suffer from significant computational inefficiencies due to generating and averaging numerous predictions, which is required in practice to produce high-quality and seamless images. This work addresses this limitation and presents a novel approach that eliminates the need to generate and average numerous overlapping denoising predictions. Our method shifts non-overlapping denoising windows over time, ensuring that seams in one timestep are corrected in the next. This results in coherent, high-resolution images with fewer overall steps. We demonstrate the effectiveness of our approach through qualitative and quantitative evaluations, comparing it with MultiDiffusion, SyncDiffusion, and StitchDiffusion. Our method offers several key benefits, including improved computational efficiency and faster inference times while producing comparable or better image quality.
Adversarial Robustness through the Lens of Convolutional Filters
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high confidence. An common defense mechanism is regularization through adversarial training which injects worst-case perturbations back into training to strengthen the decision boundaries, and to reduce overfitting. In this context, we perform an investigation of 3x3 convolution filters that form in adversarially-trained models. Filters are extracted from 71 public models of the linf-RobustBench CIFAR-10/100 and ImageNet1k leaderboard and compared to filters extracted from models built on the same architectures but trained without robust regularization. We observe that adversarially-robust models appear to form more diverse, less sparse, and more orthogonal convolution filters than their normal counterparts. The largest differences between robust and normal models are found in the deepest layers, and the very first convolution layer, which consistently and predominantly forms filters that can partially eliminate perturbations, irrespective of the architecture. Data & Project website: https://github.com/paulgavrikov/cvpr22w_RobustnessThroughTheLens
Destruction of Image Steganography using Generative Adversarial Networks
Digital image steganalysis, or the detection of image steganography, has been studied in depth for years and is driven by Advanced Persistent Threat (APT) groups', such as APT37 Reaper, utilization of steganographic techniques to transmit additional malware to perform further post-exploitation activity on a compromised host. However, many steganalysis algorithms are constrained to work with only a subset of all possible images in the wild or are known to produce a high false positive rate. This results in blocking any suspected image being an unreasonable policy. A more feasible policy is to filter suspicious images prior to reception by the host machine. However, how does one optimally filter specifically to obfuscate or remove image steganography while avoiding degradation of visual image quality in the case that detection of the image was a false positive? We propose the Deep Digital Steganography Purifier (DDSP), a Generative Adversarial Network (GAN) which is optimized to destroy steganographic content without compromising the perceptual quality of the original image. As verified by experimental results, our model is capable of providing a high rate of destruction of steganographic image content while maintaining a high visual quality in comparison to other state-of-the-art filtering methods. Additionally, we test the transfer learning capability of generalizing to to obfuscate real malware payloads embedded into different image file formats and types using an unseen steganographic algorithm and prove that our model can in fact be deployed to provide adequate results.
RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit Neural Representations
COMpression with Bayesian Implicit NEural Representations (COMBINER) is a recent data compression method that addresses a key inefficiency of previous Implicit Neural Representation (INR)-based approaches: it avoids quantization and enables direct optimization of the rate-distortion performance. However, COMBINER still has significant limitations: 1) it uses factorized priors and posterior approximations that lack flexibility; 2) it cannot effectively adapt to local deviations from global patterns in the data; and 3) its performance can be susceptible to modeling choices and the variational parameters' initializations. Our proposed method, Robust and Enhanced COMBINER (RECOMBINER), addresses these issues by 1) enriching the variational approximation while retaining a low computational cost via a linear reparameterization of the INR weights, 2) augmenting our INRs with learnable positional encodings that enable them to adapt to local details and 3) splitting high-resolution data into patches to increase robustness and utilizing expressive hierarchical priors to capture dependency across patches. We conduct extensive experiments across several data modalities, showcasing that RECOMBINER achieves competitive results with the best INR-based methods and even outperforms autoencoder-based codecs on low-resolution images at low bitrates. Our PyTorch implementation is available at https://github.com/cambridge-mlg/RECOMBINER/.
RIFLEx: A Free Lunch for Length Extrapolation in Video Diffusion Transformers
Recent advancements in video generation have enabled models to synthesize high-quality, minute-long videos. However, generating even longer videos with temporal coherence remains a major challenge, and existing length extrapolation methods lead to temporal repetition or motion deceleration. In this work, we systematically analyze the role of frequency components in positional embeddings and identify an intrinsic frequency that primarily governs extrapolation behavior. Based on this insight, we propose RIFLEx, a minimal yet effective approach that reduces the intrinsic frequency to suppress repetition while preserving motion consistency, without requiring any additional modifications. RIFLEx offers a true free lunch--achieving high-quality 2times extrapolation on state-of-the-art video diffusion transformers in a completely training-free manner. Moreover, it enhances quality and enables 3times extrapolation by minimal fine-tuning without long videos. Project page and codes: https://riflex-video.github.io/{https://riflex-video.github.io/.}
CrAM: A Compression-Aware Minimizer
Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (sim 1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at https://github.com/IST-DASLab/CrAM .
Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling
While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
Given a factorization of an image into a sum of linear components, we present a zero-shot method to control each individual component through diffusion model sampling. For example, we can decompose an image into low and high spatial frequencies and condition these components on different text prompts. This produces hybrid images, which change appearance depending on viewing distance. By decomposing an image into three frequency subbands, we can generate hybrid images with three prompts. We also use a decomposition into grayscale and color components to produce images whose appearance changes when they are viewed in grayscale, a phenomena that naturally occurs under dim lighting. And we explore a decomposition by a motion blur kernel, which produces images that change appearance under motion blurring. Our method works by denoising with a composite noise estimate, built from the components of noise estimates conditioned on different prompts. We also show that for certain decompositions, our method recovers prior approaches to compositional generation and spatial control. Finally, we show that we can extend our approach to generate hybrid images from real images. We do this by holding one component fixed and generating the remaining components, effectively solving an inverse problem.
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion
Diffusion models are proficient at generating high-quality images. They are however effective only when operating at the resolution used during training. Inference at a scaled resolution leads to repetitive patterns and structural distortions. Retraining at higher resolutions quickly becomes prohibitive. Thus, methods enabling pre-existing diffusion models to operate at flexible test-time resolutions are highly desirable. Previous works suffer from frequent artifacts and often introduce large latency overheads. We propose two simple modules that combine to solve these issues. We introduce a Frequency Modulation (FM) module that leverages the Fourier domain to improve the global structure consistency, and an Attention Modulation (AM) module which improves the consistency of local texture patterns, a problem largely ignored in prior works. Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training. Extensive qualitative results highlight the effectiveness of our method in addressing structural and local artifacts, while quantitative results show state-of-the-art performance. Also, our method avoids redundant inference tricks for improved consistency such as patch-based or progressive generation, leading to negligible latency overheads.
InfantCryNet: A Data-driven Framework for Intelligent Analysis of Infant Cries
Understanding the meaning of infant cries is a significant challenge for young parents in caring for their newborns. The presence of background noise and the lack of labeled data present practical challenges in developing systems that can detect crying and analyze its underlying reasons. In this paper, we present a novel data-driven framework, "InfantCryNet," for accomplishing these tasks. To address the issue of data scarcity, we employ pre-trained audio models to incorporate prior knowledge into our model. We propose the use of statistical pooling and multi-head attention pooling techniques to extract features more effectively. Additionally, knowledge distillation and model quantization are applied to enhance model efficiency and reduce the model size, better supporting industrial deployment in mobile devices. Experiments on real-life datasets demonstrate the superior performance of the proposed framework, outperforming state-of-the-art baselines by 4.4% in classification accuracy. The model compression effectively reduces the model size by 7% without compromising performance and by up to 28% with only an 8% decrease in accuracy, offering practical insights for model selection and system design.
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Data-parallel distributed training of deep neural networks (DNN) has gained very widespread adoption, but can still experience communication bottlenecks. To address this issue, entire families of compression mechanisms have been developed, including quantization, sparsification, and low-rank approximation, some of which are seeing significant practical adoption. Despite this progress, almost all known compression schemes apply compression uniformly across DNN layers, although layers are heterogeneous in terms of parameter count and their impact on model accuracy. In this work, we provide a general framework for adapting the degree of compression across the model's layers dynamically during training, improving the overall compression, while leading to substantial speedups, without sacrificing accuracy. Our framework, called L-GreCo, is based on an adaptive algorithm, which automatically picks the optimal compression parameters for model layers guaranteeing the best compression ratio while satisfying an error constraint. Extensive experiments over image classification and language modeling tasks shows that L-GreCo is effective across all existing families of compression methods, and achieves up to 2.5times training speedup and up to 5times compression improvement over efficient implementations of existing approaches, while recovering full accuracy. Moreover, L-GreCo is complementary to existing adaptive algorithms, improving their compression ratio by 50% and practical throughput by 66%.
X-Adapter: Adding Universal Compatibility of Plugins for Upgraded Diffusion Model
We introduce X-Adapter, a universal upgrader to enable the pretrained plug-and-play modules (e.g., ControlNet, LoRA) to work directly with the upgraded text-to-image diffusion model (e.g., SDXL) without further retraining. We achieve this goal by training an additional network to control the frozen upgraded model with the new text-image data pairs. In detail, X-Adapter keeps a frozen copy of the old model to preserve the connectors of different plugins. Additionally, X-Adapter adds trainable mapping layers that bridge the decoders from models of different versions for feature remapping. The remapped features will be used as guidance for the upgraded model. To enhance the guidance ability of X-Adapter, we employ a null-text training strategy for the upgraded model. After training, we also introduce a two-stage denoising strategy to align the initial latents of X-Adapter and the upgraded model. Thanks to our strategies, X-Adapter demonstrates universal compatibility with various plugins and also enables plugins of different versions to work together, thereby expanding the functionalities of diffusion community. To verify the effectiveness of the proposed method, we conduct extensive experiments and the results show that X-Adapter may facilitate wider application in the upgraded foundational diffusion model.
MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.
Composable Sparse Fine-Tuning for Cross-Lingual Transfer
Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft.
What Do Compressed Deep Neural Networks Forget?
Deep neural network pruning and quantization techniques have demonstrated it is possible to achieve high levels of compression with surprisingly little degradation to test set accuracy. However, this measure of performance conceals significant differences in how different classes and images are impacted by model compression techniques. We find that models with radically different numbers of weights have comparable top-line performance metrics but diverge considerably in behavior on a narrow subset of the dataset. This small subset of data points, which we term Pruning Identified Exemplars (PIEs) are systematically more impacted by the introduction of sparsity. Compression disproportionately impacts model performance on the underrepresented long-tail of the data distribution. PIEs over-index on atypical or noisy images that are far more challenging for both humans and algorithms to classify. Our work provides intuition into the role of capacity in deep neural networks and the trade-offs incurred by compression. An understanding of this disparate impact is critical given the widespread deployment of compressed models in the wild.
CATR: Combinatorial-Dependence Audio-Queried Transformer for Audio-Visual Video Segmentation
Audio-visual video segmentation~(AVVS) aims to generate pixel-level maps of sound-producing objects within image frames and ensure the maps faithfully adhere to the given audio, such as identifying and segmenting a singing person in a video. However, existing methods exhibit two limitations: 1) they address video temporal features and audio-visual interactive features separately, disregarding the inherent spatial-temporal dependence of combined audio and video, and 2) they inadequately introduce audio constraints and object-level information during the decoding stage, resulting in segmentation outcomes that fail to comply with audio directives. To tackle these issues, we propose a decoupled audio-video transformer that combines audio and video features from their respective temporal and spatial dimensions, capturing their combined dependence. To optimize memory consumption, we design a block, which, when stacked, enables capturing audio-visual fine-grained combinatorial-dependence in a memory-efficient manner. Additionally, we introduce audio-constrained queries during the decoding phase. These queries contain rich object-level information, ensuring the decoded mask adheres to the sounds. Experimental results confirm our approach's effectiveness, with our framework achieving a new SOTA performance on all three datasets using two backbones. The code is available at https://github.com/aspirinone/CATR.github.io
Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures. However, prevailing SR models suffer from prohibitive memory footprint and intensive computations, which limits further deployment on edge devices. This work investigates the potential of network pruning for super-resolution to take advantage of off-the-shelf network designs and reduce the underlying computational overhead. Two main challenges remain in applying pruning methods for SR. First, the widely-used filter pruning technique reflects limited granularity and restricted adaptability to diverse network structures. Second, existing pruning methods generally operate upon a pre-trained network for the sparse structure determination, hard to get rid of dense model training in the traditional SR paradigm. To address these challenges, we adopt unstructured pruning with sparse models directly trained from scratch. Specifically, we propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly initialized network at each iteration and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly. We observe that the proposed ISS-P can dynamically learn sparse structures adapting to the optimization process and preserve the sparse model's trainability by yielding a more regularized gradient throughput. Experiments on benchmark datasets demonstrate the effectiveness of the proposed ISS-P over diverse network architectures. Code is available at https://github.com/Jiamian-Wang/Iterative-Soft-Shrinkage-SR
Joint Modeling of Feature, Correspondence, and a Compressed Memory for Video Object Segmentation
Current prevailing Video Object Segmentation (VOS) methods usually perform dense matching between the current and reference frames after extracting their features. One on hand, the decoupled modeling restricts the targets information propagation only at high-level feature space. On the other hand, the pixel-wise matching leads to a lack of holistic understanding of the targets. To overcome these issues, we propose a unified VOS framework, coined as JointFormer, for joint modeling the three elements of feature, correspondence, and a compressed memory. The core design is the Joint Block, utilizing the flexibility of attention to simultaneously extract feature and propagate the targets information to the current tokens and the compressed memory token. This scheme allows to perform extensive information propagation and discriminative feature learning. To incorporate the long-term temporal targets information, we also devise a customized online updating mechanism for the compressed memory token, which can prompt the information flow along the temporal dimension and thus improve the global modeling capability. Under the design, our method achieves a new state-of-art performance on DAVIS 2017 val/test-dev (89.7% and 87.6%) and YouTube-VOS 2018/2019 val (87.0% and 87.0%) benchmarks, outperforming existing works by a large margin.
SVNR: Spatially-variant Noise Removal with Denoising Diffusion
Denoising diffusion models have recently shown impressive results in generative tasks. By learning powerful priors from huge collections of training images, such models are able to gradually modify complete noise to a clean natural image via a sequence of small denoising steps, seemingly making them well-suited for single image denoising. However, effectively applying denoising diffusion models to removal of realistic noise is more challenging than it may seem, since their formulation is based on additive white Gaussian noise, unlike noise in real-world images. In this work, we present SVNR, a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model. SVNR enables using the noisy input image as the starting point for the denoising diffusion process, in addition to conditioning the process on it. To this end, we adapt the diffusion process to allow each pixel to have its own time embedding, and propose training and inference schemes that support spatially-varying time maps. Our formulation also accounts for the correlation that exists between the condition image and the samples along the modified diffusion process. In our experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
FcaNet: Frequency Channel Attention Networks
Attention mechanism, especially channel attention, has gained great success in the computer vision field. Many works focus on how to design efficient channel attention mechanisms while ignoring a fundamental problem, i.e., channel attention mechanism uses scalar to represent channel, which is difficult due to massive information loss. In this work, we start from a different view and regard the channel representation problem as a compression process using frequency analysis. Based on the frequency analysis, we mathematically prove that the conventional global average pooling is a special case of the feature decomposition in the frequency domain. With the proof, we naturally generalize the compression of the channel attention mechanism in the frequency domain and propose our method with multi-spectral channel attention, termed as FcaNet. FcaNet is simple but effective. We can change a few lines of code in the calculation to implement our method within existing channel attention methods. Moreover, the proposed method achieves state-of-the-art results compared with other channel attention methods on image classification, object detection, and instance segmentation tasks. Our method could consistently outperform the baseline SENet, with the same number of parameters and the same computational cost. Our code and models will are publicly available at https://github.com/cfzd/FcaNet.
Filter-enhanced MLP is All You Need for Sequential Recommendation
Recently, deep neural networks such as RNN, CNN and Transformer have been applied in the task of sequential recommendation, which aims to capture the dynamic preference characteristics from logged user behavior data for accurate recommendation. However, in online platforms, logged user behavior data is inevitable to contain noise, and deep recommendation models are easy to overfit on these logged data. To tackle this problem, we borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain. In our empirical experiments, we find that filtering algorithms can substantially improve representative sequential recommendation models, and integrating simple filtering algorithms (eg Band-Stop Filter) with an all-MLP architecture can even outperform competitive Transformer-based models. Motivated by it, we propose FMLP-Rec, an all-MLP model with learnable filters for sequential recommendation task. The all-MLP architecture endows our model with lower time complexity, and the learnable filters can adaptively attenuate the noise information in the frequency domain. Extensive experiments conducted on eight real-world datasets demonstrate the superiority of our proposed method over competitive RNN, CNN, GNN and Transformer-based methods. Our code and data are publicly available at the link: blue{https://github.com/RUCAIBox/FMLP-Rec}.
I3D: Transformer architectures with input-dependent dynamic depth for speech recognition
Transformer-based end-to-end speech recognition has achieved great success. However, the large footprint and computational overhead make it difficult to deploy these models in some real-world applications. Model compression techniques can reduce the model size and speed up inference, but the compressed model has a fixed architecture which might be suboptimal. We propose a novel Transformer encoder with Input-Dependent Dynamic Depth (I3D) to achieve strong performance-efficiency trade-offs. With a similar number of layers at inference time, I3D-based models outperform the vanilla Transformer and the static pruned model via iterative layer pruning. We also present interesting analysis on the gate probabilities and the input-dependency, which helps us better understand deep encoders.
Fréchet Cumulative Covariance Net for Deep Nonlinear Sufficient Dimension Reduction with Random Objects
Nonlinear sufficient dimension reductionlibing_generalSDR, which constructs nonlinear low-dimensional representations to summarize essential features of high-dimensional data, is an important branch of representation learning. However, most existing methods are not applicable when the response variables are complex non-Euclidean random objects, which are frequently encountered in many recent statistical applications. In this paper, we introduce a new statistical dependence measure termed Fr\'echet Cumulative Covariance (FCCov) and develop a novel nonlinear SDR framework based on FCCov. Our approach is not only applicable to complex non-Euclidean data, but also exhibits robustness against outliers. We further incorporate Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to estimate nonlinear sufficient directions in the sample level. Theoretically, we prove that our method with squared Frobenius norm regularization achieves unbiasedness at the sigma-field level. Furthermore, we establish non-asymptotic convergence rates for our estimators based on FNNs and ResNet-type CNNs, which match the minimax rate of nonparametric regression up to logarithmic factors. Intensive simulation studies verify the performance of our methods in both Euclidean and non-Euclidean settings. We apply our method to facial expression recognition datasets and the results underscore more realistic and broader applicability of our proposal.
Quantised Global Autoencoder: A Holistic Approach to Representing Visual Data
In quantised autoencoders, images are usually split into local patches, each encoded by one token. This representation is redundant in the sense that the same number of tokens is spend per region, regardless of the visual information content in that region. Adaptive discretisation schemes like quadtrees are applied to allocate tokens for patches with varying sizes, but this just varies the region of influence for a token which nevertheless remains a local descriptor. Modern architectures add an attention mechanism to the autoencoder which infuses some degree of global information into the local tokens. Despite the global context, tokens are still associated with a local image region. In contrast, our method is inspired by spectral decompositions which transform an input signal into a superposition of global frequencies. Taking the data-driven perspective, we learn custom basis functions corresponding to the codebook entries in our VQ-VAE setup. Furthermore, a decoder combines these basis functions in a non-linear fashion, going beyond the simple linear superposition of spectral decompositions. We can achieve this global description with an efficient transpose operation between features and channels and demonstrate our performance on compression.
HollowNeRF: Pruning Hashgrid-Based NeRFs with Trainable Collision Mitigation
Neural radiance fields (NeRF) have garnered significant attention, with recent works such as Instant-NGP accelerating NeRF training and evaluation through a combination of hashgrid-based positional encoding and neural networks. However, effectively leveraging the spatial sparsity of 3D scenes remains a challenge. To cull away unnecessary regions of the feature grid, existing solutions rely on prior knowledge of object shape or periodically estimate object shape during training by repeated model evaluations, which are costly and wasteful. To address this issue, we propose HollowNeRF, a novel compression solution for hashgrid-based NeRF which automatically sparsifies the feature grid during the training phase. Instead of directly compressing dense features, HollowNeRF trains a coarse 3D saliency mask that guides efficient feature pruning, and employs an alternating direction method of multipliers (ADMM) pruner to sparsify the 3D saliency mask during training. By exploiting the sparsity in the 3D scene to redistribute hash collisions, HollowNeRF improves rendering quality while using a fraction of the parameters of comparable state-of-the-art solutions, leading to a better cost-accuracy trade-off. Our method delivers comparable rendering quality to Instant-NGP, while utilizing just 31% of the parameters. In addition, our solution can achieve a PSNR accuracy gain of up to 1dB using only 56% of the parameters.
PairingNet: A Learning-based Pair-searching and -matching Network for Image Fragments
In this paper, we propose a learning-based image fragment pair-searching and -matching approach to solve the challenging restoration problem. Existing works use rule-based methods to match similar contour shapes or textures, which are always difficult to tune hyperparameters for extensive data and computationally time-consuming. Therefore, we propose a neural network that can effectively utilize neighbor textures with contour shape information to fundamentally improve performance. First, we employ a graph-based network to extract the local contour and texture features of fragments. Then, for the pair-searching task, we adopt a linear transformer-based module to integrate these local features and use contrastive loss to encode the global features of each fragment. For the pair-matching task, we design a weighted fusion module to dynamically fuse extracted local contour and texture features, and formulate a similarity matrix for each pair of fragments to calculate the matching score and infer the adjacent segment of contours. To faithfully evaluate our proposed network, we created a new image fragment dataset through an algorithm we designed that tears complete images into irregular fragments. The experimental results show that our proposed network achieves excellent pair-searching accuracy, reduces matching errors, and significantly reduces computational time. Details, sourcecode, and data are available in our supplementary material.
Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective
In recent years, we have witnessed the great advancement of Deep neural networks (DNNs) in image restoration. However, a critical limitation is that they cannot generalize well to real-world degradations with different degrees or types. In this paper, we are the first to propose a novel training strategy for image restoration from the causality perspective, to improve the generalization ability of DNNs for unknown degradations. Our method, termed Distortion Invariant representation Learning (DIL), treats each distortion type and degree as one specific confounder, and learns the distortion-invariant representation by eliminating the harmful confounding effect of each degradation. We derive our DIL with the back-door criterion in causality by modeling the interventions of different distortions from the optimization perspective. Particularly, we introduce counterfactual distortion augmentation to simulate the virtual distortion types and degrees as the confounders. Then, we instantiate the intervention of each distortion with a virtual model updating based on corresponding distorted images, and eliminate them from the meta-learning perspective. Extensive experiments demonstrate the effectiveness of our DIL on the generalization capability for unseen distortion types and degrees. Our code will be available at https://github.com/lixinustc/Causal-IR-DIL.
WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
High Fidelity Neural Audio Compression
We introduce a state-of-the-art real-time, high-fidelity, audio codec leveraging neural networks. It consists in a streaming encoder-decoder architecture with quantized latent space trained in an end-to-end fashion. We simplify and speed-up the training by using a single multiscale spectrogram adversary that efficiently reduces artifacts and produce high-quality samples. We introduce a novel loss balancer mechanism to stabilize training: the weight of a loss now defines the fraction of the overall gradient it should represent, thus decoupling the choice of this hyper-parameter from the typical scale of the loss. Finally, we study how lightweight Transformer models can be used to further compress the obtained representation by up to 40%, while staying faster than real time. We provide a detailed description of the key design choices of the proposed model including: training objective, architectural changes and a study of various perceptual loss functions. We present an extensive subjective evaluation (MUSHRA tests) together with an ablation study for a range of bandwidths and audio domains, including speech, noisy-reverberant speech, and music. Our approach is superior to the baselines methods across all evaluated settings, considering both 24 kHz monophonic and 48 kHz stereophonic audio. Code and models are available at github.com/facebookresearch/encodec.
Dense Pixel-to-Pixel Harmonization via Continuous Image Representation
High-resolution (HR) image harmonization is of great significance in real-world applications such as image synthesis and image editing. However, due to the high memory costs, existing dense pixel-to-pixel harmonization methods are mainly focusing on processing low-resolution (LR) images. Some recent works resort to combining with color-to-color transformations but are either limited to certain resolutions or heavily depend on hand-crafted image filters. In this work, we explore leveraging the implicit neural representation (INR) and propose a novel image Harmonization method based on Implicit neural Networks (HINet), which to the best of our knowledge, is the first dense pixel-to-pixel method applicable to HR images without any hand-crafted filter design. Inspired by the Retinex theory, we decouple the MLPs into two parts to respectively capture the content and environment of composite images. A Low-Resolution Image Prior (LRIP) network is designed to alleviate the Boundary Inconsistency problem, and we also propose new designs for the training and inference process. Extensive experiments have demonstrated the effectiveness of our method compared with state-of-the-art methods. Furthermore, some interesting and practical applications of the proposed method are explored. Our code will be available at https://github.com/WindVChen/INR-Harmonization.
Conditional Generation of Periodic Signals with Fourier-Based Decoder
Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
Revisiting the Parameter Efficiency of Adapters from the Perspective of Precision Redundancy
Current state-of-the-art results in computer vision depend in part on fine-tuning large pre-trained vision models. However, with the exponential growth of model sizes, the conventional full fine-tuning, which needs to store a individual network copy for each tasks, leads to increasingly huge storage and transmission overhead. Adapter-based Parameter-Efficient Tuning (PET) methods address this challenge by tuning lightweight adapters inserted into the frozen pre-trained models. In this paper, we investigate how to make adapters even more efficient, reaching a new minimum size required to store a task-specific fine-tuned network. Inspired by the observation that the parameters of adapters converge at flat local minima, we find that adapters are resistant to noise in parameter space, which means they are also resistant to low numerical precision. To train low-precision adapters, we propose a computational-efficient quantization method which minimizes the quantization error. Through extensive experiments, we find that low-precision adapters exhibit minimal performance degradation, and even 1-bit precision is sufficient for adapters. The experimental results demonstrate that 1-bit adapters outperform all other PET methods on both the VTAB-1K benchmark and few-shot FGVC tasks, while requiring the smallest storage size. Our findings show, for the first time, the significant potential of quantization techniques in PET, providing a general solution to enhance the parameter efficiency of adapter-based PET methods. Code: https://github.com/JieShibo/PETL-ViT
To prune, or not to prune: exploring the efficacy of pruning for model compression
Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.
Music2Latent: Consistency Autoencoders for Latent Audio Compression
Efficient audio representations in a compressed continuous latent space are critical for generative audio modeling and Music Information Retrieval (MIR) tasks. However, some existing audio autoencoders have limitations, such as multi-stage training procedures, slow iterative sampling, or low reconstruction quality. We introduce Music2Latent, an audio autoencoder that overcomes these limitations by leveraging consistency models. Music2Latent encodes samples into a compressed continuous latent space in a single end-to-end training process while enabling high-fidelity single-step reconstruction. Key innovations include conditioning the consistency model on upsampled encoder outputs at all levels through cross connections, using frequency-wise self-attention to capture long-range frequency dependencies, and employing frequency-wise learned scaling to handle varying value distributions across frequencies at different noise levels. We demonstrate that Music2Latent outperforms existing continuous audio autoencoders in sound quality and reconstruction accuracy while achieving competitive performance on downstream MIR tasks using its latent representations. To our knowledge, this represents the first successful attempt at training an end-to-end consistency autoencoder model.
Group channel pruning and spatial attention distilling for object detection
Due to the over-parameterization of neural networks, many model compression methods based on pruning and quantization have emerged. They are remarkable in reducing the size, parameter number, and computational complexity of the model. However, most of the models compressed by such methods need the support of special hardware and software, which increases the deployment cost. Moreover, these methods are mainly used in classification tasks, and rarely directly used in detection tasks. To address these issues, for the object detection network we introduce a three-stage model compression method: dynamic sparse training, group channel pruning, and spatial attention distilling. Firstly, to select out the unimportant channels in the network and maintain a good balance between sparsity and accuracy, we put forward a dynamic sparse training method, which introduces a variable sparse rate, and the sparse rate will change with the training process of the network. Secondly, to reduce the effect of pruning on network accuracy, we propose a novel pruning method called group channel pruning. In particular, we divide the network into multiple groups according to the scales of the feature layer and the similarity of module structure in the network, and then we use different pruning thresholds to prune the channels in each group. Finally, to recover the accuracy of the pruned network, we use an improved knowledge distillation method for the pruned network. Especially, we extract spatial attention information from the feature maps of specific scales in each group as knowledge for distillation. In the experiments, we use YOLOv4 as the object detection network and PASCAL VOC as the training dataset. Our method reduces the parameters of the model by 64.7 % and the calculation by 34.9%.
D'OH: Decoder-Only random Hypernetworks for Implicit Neural Representations
Deep implicit functions have been found to be an effective tool for efficiently encoding all manner of natural signals. Their attractiveness stems from their ability to compactly represent signals with little to no off-line training data. Instead, they leverage the implicit bias of deep networks to decouple hidden redundancies within the signal. In this paper, we explore the hypothesis that additional compression can be achieved by leveraging the redundancies that exist between layers. We propose to use a novel run-time decoder-only hypernetwork - that uses no offline training data - to better model this cross-layer parameter redundancy. Previous applications of hyper-networks with deep implicit functions have applied feed-forward encoder/decoder frameworks that rely on large offline datasets that do not generalize beyond the signals they were trained on. We instead present a strategy for the initialization of run-time deep implicit functions for single-instance signals through a Decoder-Only randomly projected Hypernetwork (D'OH). By directly changing the dimension of a latent code to approximate a target implicit neural architecture, we provide a natural way to vary the memory footprint of neural representations without the costly need for neural architecture search on a space of alternative low-rate structures.
Noise Calibration: Plug-and-play Content-Preserving Video Enhancement using Pre-trained Video Diffusion Models
In order to improve the quality of synthesized videos, currently, one predominant method involves retraining an expert diffusion model and then implementing a noising-denoising process for refinement. Despite the significant training costs, maintaining consistency of content between the original and enhanced videos remains a major challenge. To tackle this challenge, we propose a novel formulation that considers both visual quality and consistency of content. Consistency of content is ensured by a proposed loss function that maintains the structure of the input, while visual quality is improved by utilizing the denoising process of pretrained diffusion models. To address the formulated optimization problem, we have developed a plug-and-play noise optimization strategy, referred to as Noise Calibration. By refining the initial random noise through a few iterations, the content of original video can be largely preserved, and the enhancement effect demonstrates a notable improvement. Extensive experiments have demonstrated the effectiveness of the proposed method.
AccDiffusion v2: Towards More Accurate Higher-Resolution Diffusion Extrapolation
Diffusion models suffer severe object repetition and local distortion when the inference resolution differs from its pre-trained resolution. We propose AccDiffusion v2, an accurate method for patch-wise higher-resolution diffusion extrapolation without training. Our in-depth analysis in this paper shows that using an identical text prompt for different patches leads to repetitive generation, while the absence of a prompt undermines image details. In response, our AccDiffusion v2 novelly decouples the vanilla image-content-aware prompt into a set of patch-content-aware prompts, each of which serves as a more precise description of a patch. Further analysis reveals that local distortion arises from inaccurate descriptions in prompts about the local structure of higher-resolution images. To address this issue, AccDiffusion v2, for the first time, introduces an auxiliary local structural information through ControlNet during higher-resolution diffusion extrapolation aiming to mitigate the local distortions. Finally, our analysis indicates that global semantic information is conducive to suppressing both repetitive generation and local distortion. Hence, our AccDiffusion v2 further proposes dilated sampling with window interaction for better global semantic information during higher-resolution diffusion extrapolation. We conduct extensive experiments, including both quantitative and qualitative comparisons, to demonstrate the efficacy of our AccDiffusion v2. The quantitative comparison shows that AccDiffusion v2 achieves state-of-the-art performance in image generation extrapolation without training. The qualitative comparison intuitively illustrates that AccDiffusion v2 effectively suppresses the issues of repetitive generation and local distortion in image generation extrapolation. Our code is available at https://github.com/lzhxmu/AccDiffusion_v2.
DiffuEraser: A Diffusion Model for Video Inpainting
Recent video inpainting algorithms integrate flow-based pixel propagation with transformer-based generation to leverage optical flow for restoring textures and objects using information from neighboring frames, while completing masked regions through visual Transformers. However, these approaches often encounter blurring and temporal inconsistencies when dealing with large masks, highlighting the need for models with enhanced generative capabilities. Recently, diffusion models have emerged as a prominent technique in image and video generation due to their impressive performance. In this paper, we introduce DiffuEraser, a video inpainting model based on stable diffusion, designed to fill masked regions with greater details and more coherent structures. We incorporate prior information to provide initialization and weak conditioning,which helps mitigate noisy artifacts and suppress hallucinations. Additionally, to improve temporal consistency during long-sequence inference, we expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models. Experimental results demonstrate that our proposed method outperforms state-of-the-art techniques in both content completeness and temporal consistency while maintaining acceptable efficiency.
Ensembling Diffusion Models via Adaptive Feature Aggregation
The success of the text-guided diffusion model has inspired the development and release of numerous powerful diffusion models within the open-source community. These models are typically fine-tuned on various expert datasets, showcasing diverse denoising capabilities. Leveraging multiple high-quality models to produce stronger generation ability is valuable, but has not been extensively studied. Existing methods primarily adopt parameter merging strategies to produce a new static model. However, they overlook the fact that the divergent denoising capabilities of the models may dynamically change across different states, such as when experiencing different prompts, initial noises, denoising steps, and spatial locations. In this paper, we propose a novel ensembling method, Adaptive Feature Aggregation (AFA), which dynamically adjusts the contributions of multiple models at the feature level according to various states (i.e., prompts, initial noises, denoising steps, and spatial locations), thereby keeping the advantages of multiple diffusion models, while suppressing their disadvantages. Specifically, we design a lightweight Spatial-Aware Block-Wise (SABW) feature aggregator that adaptive aggregates the block-wise intermediate features from multiple U-Net denoisers into a unified one. The core idea lies in dynamically producing an individual attention map for each model's features by comprehensively considering various states. It is worth noting that only SABW is trainable with about 50 million parameters, while other models are frozen. Both the quantitative and qualitative experiments demonstrate the effectiveness of our proposed Adaptive Feature Aggregation method. The code is available at https://github.com/tenvence/afa/.
LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba
Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
The Fast Johnson-Lindenstrauss Transform is Even Faster
The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) embeds a set of n points in d-dimensional Euclidean space into optimal k=O(varepsilon^{-2} ln n) dimensions, while preserving all pairwise distances to within a factor (1 pm varepsilon). The Fast JL transform supports computing the embedding of a data point in O(d ln d +k ln^2 n) time, where the d ln d term comes from multiplication with a d times d Hadamard matrix and the k ln^2 n term comes from multiplication with a sparse k times d matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between varepsilon, d and n. In this work, we give a surprising new analysis of the Fast JL transform, showing that the k ln^2 n term in the embedding time can be improved to (k ln^2 n)/alpha for an alpha = Omega(min{varepsilon^{-1}ln(1/varepsilon), ln n}). The improvement follows by using an even sparser matrix. We also complement our improved analysis with a lower bound showing that our new analysis is in fact tight.
White-Box Transformers via Sparse Rate Reduction
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.
StreamDiffusion: A Pipeline-level Solution for Real-time Interactive Generation
We introduce StreamDiffusion, a real-time diffusion pipeline designed for interactive image generation. Existing diffusion models are adept at creating images from text or image prompts, yet they often fall short in real-time interaction. This limitation becomes particularly evident in scenarios involving continuous input, such as Metaverse, live video streaming, and broadcasting, where high throughput is imperative. To address this, we present a novel approach that transforms the original sequential denoising into the batching denoising process. Stream Batch eliminates the conventional wait-and-interact approach and enables fluid and high throughput streams. To handle the frequency disparity between data input and model throughput, we design a novel input-output queue for parallelizing the streaming process. Moreover, the existing diffusion pipeline uses classifier-free guidance(CFG), which requires additional U-Net computation. To mitigate the redundant computations, we propose a novel residual classifier-free guidance (RCFG) algorithm that reduces the number of negative conditional denoising steps to only one or even zero. Besides, we introduce a stochastic similarity filter(SSF) to optimize power consumption. Our Stream Batch achieves around 1.5x speedup compared to the sequential denoising method at different denoising levels. The proposed RCFG leads to speeds up to 2.05x higher than the conventional CFG. Combining the proposed strategies and existing mature acceleration tools makes the image-to-image generation achieve up-to 91.07fps on one RTX4090, improving the throughputs of AutoPipline developed by Diffusers over 59.56x. Furthermore, our proposed StreamDiffusion also significantly reduces the energy consumption by 2.39x on one RTX3060 and 1.99x on one RTX4090, respectively.
Low-light Image Enhancement via Breaking Down the Darkness
Images captured in low-light environment often suffer from complex degradation. Simply adjusting light would inevitably result in burst of hidden noise and color distortion. To seek results with satisfied lighting, cleanliness, and realism from degraded inputs, this paper presents a novel framework inspired by the divide-and-rule principle, greatly alleviating the degradation entanglement. Assuming that an image can be decomposed into texture (with possible noise) and color components, one can specifically execute noise removal and color correction along with light adjustment. Towards this purpose, we propose to convert an image from the RGB space into a luminance-chrominance one. An adjustable noise suppression network is designed to eliminate noise in the brightened luminance, having the illumination map estimated to indicate noise boosting levels. The enhanced luminance further serves as guidance for the chrominance mapper to generate realistic colors. Extensive experiments are conducted to reveal the effectiveness of our design, and demonstrate its superiority over state-of-the-art alternatives both quantitatively and qualitatively on several benchmark datasets. Our code is publicly available at https://github.com/mingcv/Bread.
Only Train Once: A One-Shot Neural Network Training And Pruning Framework
Structured pruning is a commonly used technique in deploying deep neural networks (DNNs) onto resource-constrained devices. However, the existing pruning methods are usually heuristic, task-specified, and require an extra fine-tuning procedure. To overcome these limitations, we propose a framework that compresses DNNs into slimmer architectures with competitive performances and significant FLOPs reductions by Only-Train-Once (OTO). OTO contains two keys: (i) we partition the parameters of DNNs into zero-invariant groups, enabling us to prune zero groups without affecting the output; and (ii) to promote zero groups, we then formulate a structured-sparsity optimization problem and propose a novel optimization algorithm, Half-Space Stochastic Projected Gradient (HSPG), to solve it, which outperforms the standard proximal methods on group sparsity exploration and maintains comparable convergence. To demonstrate the effectiveness of OTO, we train and compress full models simultaneously from scratch without fine-tuning for inference speedup and parameter reduction, and achieve state-of-the-art results on VGG16 for CIFAR10, ResNet50 for CIFAR10 and Bert for SQuAD and competitive result on ResNet50 for ImageNet. The source code is available at https://github.com/tianyic/only_train_once.
Curvature-Aware Training for Coordinate Networks
Coordinate networks are widely used in computer vision due to their ability to represent signals as compressed, continuous entities. However, training these networks with first-order optimizers can be slow, hindering their use in real-time applications. Recent works have opted for shallow voxel-based representations to achieve faster training, but this sacrifices memory efficiency. This work proposes a solution that leverages second-order optimization methods to significantly reduce training times for coordinate networks while maintaining their compressibility. Experiments demonstrate the effectiveness of this approach on various signal modalities, such as audio, images, videos, shape reconstruction, and neural radiance fields.