- Population Transformer: Learning Population-level Representations of Neural Activity We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scale. We address two key challenges in scaling models with neural time-series data: sparse and variable electrode distribution across subjects and datasets. The Population Transformer (PopT) stacks on top of pretrained representations and enhances downstream decoding by enabling learned aggregation of multiple spatially-sparse data channels. The pretrained PopT lowers the amount of data required for downstream decoding experiments, while increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end methods, this approach is computationally lightweight and more interpretable, while still retaining competitive performance. We further show how our framework is generalizable to multiple time-series embeddings and neural data modalities. Beyond decoding, we interpret the pretrained PopT and fine-tuned models to show how they can be used to extract neuroscience insights from massive amounts of data. We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability. 8 authors · Jun 5, 2024
- Sodium Metal Battery using CobaltOxide through in Situ Plating of Sodium Metal In this work, we demonstrate that an impugn of energy density for sodium chemistries can be prevail through an anode-free architecture enabled by the use of a (nanocarbon/Cobaltoxide) nucleation layer formed on Aluminium current collectors. Electrochemical studies show this configuration to provide highly stable and efficient plating and stripping of sodium metal over a range of currents up to 5 mA/cm2, sodium loading up to 14 mAh/cm2, and with long-term endurance exceeding 1000 cycles at a current of 0.7 mA/cm2. Building upon this anode-free architecture, we demonstrate a full cell using a presodiated pyrite cathode to achieve energy densities of 400 Wh/kg, far surpassing recent reports on SIBs and even the theoretical maximum for LIB technology while still relying on naturally abundant raw materials and cost-effective aqueous processing. 2 authors · Oct 2, 2018
- Drift surface solver for runaway electron current dominant equilibria during the Current Quench Runaway electron current generated during the Current Quench phase of tokamak disruptions could result in severe damage to future high performance devices. To control and mitigate such runaway electron current, it is important to accurately describe the runaway electron current dominated equilibrium, based on which further stability analysis could be carried out. In this paper, we derive a Grad-Shafranov-like equation solving for the axisymmetric drift surfaces of the runaway electrons for the simple case that all runaway electron share the same parallel momentum. This new equilibrium equation is then numerically solved with simple rectangular wall with ITER-like and MAST-like geometry parameters. The deviation between the drift surfaces and the flux surfaces is readily obtained, and runaway electrons is found to be well confined even in regions with open field lines. The change of the runaway electron parallel momentum is found to result in a horizontal current center displacement without any changes in the total current or the external field. The runaway current density profile is found to affect the susceptibility of such displacement, with flatter profiles result in more displacement by the same momentum change. With up-down asymmetry in the external poloidal field, such displacement is accompanied by a vertical displacement of runaway electron current. It is found that this effect is more pronounced in smaller, compact device and weaker poloidal field cases. The above results demonstrate the dynamics of current center displacement caused by the momentum space change in the runaway electrons, and pave way for future, more sophisticated runaway current equilibrium theory with more realistic consideration on the runaway electron momentum distribution. This new equilibrium theory also provides foundation for future stability analysis of the runaway electron current. 2 authors · Mar 2, 2023