new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Number Cookbook: Number Understanding of Language Models and How to Improve It

Large language models (LLMs) can solve an increasing number of complex reasoning tasks while making surprising mistakes in basic numerical understanding and processing (such as 9.11 > 9.9). The latter ability is essential for tackling complex arithmetic and mathematical problems and serves as a foundation for most reasoning tasks, but previous work paid little attention to it or only discussed several restricted tasks (like integer addition). In this paper, we comprehensively investigate the numerical understanding and processing ability (NUPA) of LLMs. Firstly, we introduce a benchmark covering four common numerical representations and 17 distinct numerical tasks in four major categories, resulting in 41 meaningful combinations in total. These tasks are derived from primary and secondary education curricula, encompassing nearly all everyday numerical understanding and processing scenarios, and the rules of these tasks are very simple and clear. Through the benchmark, we find that current LLMs fail frequently in many of the tasks. To study the problem, we train small models with existing and potential techniques for enhancing NUPA (such as tokenizers, PEs, and number formats), comprehensively evaluating their effectiveness using our testbed. We also finetune practical-scale LLMs on our proposed NUPA tasks and find that 1) naive finetuning can improve NUPA a lot on many but not all tasks, and 2) surprisingly, techniques designed to enhance NUPA prove ineffective for finetuning pretrained models. We further explore the impact of chain-of-thought techniques on NUPA. Our work provides a more detailed and comprehensive understanding of NUPA in LLMs. Our benchmark and code are released at https://github.com/GraphPKU/number_cookbook.

Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings

The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.

Large Language and Text-to-3D Models for Engineering Design Optimization

The current advances in generative AI for learning large neural network models with the capability to produce essays, images, music and even 3D assets from text prompts create opportunities for a manifold of disciplines. In the present paper, we study the potential of deep text-to-3D models in the engineering domain, with focus on the chances and challenges when integrating and interacting with 3D assets in computational simulation-based design optimization. In contrast to traditional design optimization of 3D geometries that often searches for the optimum designs using numerical representations, such as B-Spline surface or deformation parameters in vehicle aerodynamic optimization, natural language challenges the optimization framework by requiring a different interpretation of variation operators while at the same time may ease and motivate the human user interaction. Here, we propose and realize a fully automated evolutionary design optimization framework using Shap-E, a recently published text-to-3D asset network by OpenAI, in the context of aerodynamic vehicle optimization. For representing text prompts in the evolutionary optimization, we evaluate (a) a bag-of-words approach based on prompt templates and Wordnet samples, and (b) a tokenisation approach based on prompt templates and the byte pair encoding method from GPT4. Our main findings from the optimizations indicate that, first, it is important to ensure that the designs generated from prompts are within the object class of application, i.e. diverse and novel designs need to be realistic, and, second, that more research is required to develop methods where the strength of text prompt variations and the resulting variations of the 3D designs share causal relations to some degree to improve the optimization.

A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions

Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.

GridPull: Towards Scalability in Learning Implicit Representations from 3D Point Clouds

Learning implicit representations has been a widely used solution for surface reconstruction from 3D point clouds. The latest methods infer a distance or occupancy field by overfitting a neural network on a single point cloud. However, these methods suffer from a slow inference due to the slow convergence of neural networks and the extensive calculation of distances to surface points, which limits them to small scale points. To resolve the scalability issue in surface reconstruction, we propose GridPull to improve the efficiency of learning implicit representations from large scale point clouds. Our novelty lies in the fast inference of a discrete distance field defined on grids without using any neural components. To remedy the lack of continuousness brought by neural networks, we introduce a loss function to encourage continuous distances and consistent gradients in the field during pulling queries onto the surface in grids near to the surface. We use uniform grids for a fast grid search to localize sampled queries, and organize surface points in a tree structure to speed up the calculation of distances to the surface. We do not rely on learning priors or normal supervision during optimization, and achieve superiority over the latest methods in terms of complexity and accuracy. We evaluate our method on shape and scene benchmarks, and report numerical and visual comparisons with the latest methods to justify our effectiveness and superiority. The code is available at https://github.com/chenchao15/GridPull.

Segmentation of 3D pore space from CT images using curvilinear skeleton: application to numerical simulation of microbial decomposition

Recent advances in 3D X-ray Computed Tomographic (CT) sensors have stimulated research efforts to unveil the extremely complex micro-scale processes that control the activity of soil microorganisms. Voxel-based description (up to hundreds millions voxels) of the pore space can be extracted, from grey level 3D CT scanner images, by means of simple image processing tools. Classical methods for numerical simulation of biological dynamics using mesh of voxels, such as Lattice Boltzmann Model (LBM), are too much time consuming. Thus, the use of more compact and reliable geometrical representations of pore space can drastically decrease the computational cost of the simulations. Several recent works propose basic analytic volume primitives (e.g. spheres, generalized cylinders, ellipsoids) to define a piece-wise approximation of pore space for numerical simulation of draining, diffusion and microbial decomposition. Such approaches work well but the drawback is that it generates approximation errors. In the present work, we study another alternative where pore space is described by means of geometrically relevant connected subsets of voxels (regions) computed from the curvilinear skeleton. Indeed, many works use the curvilinear skeleton (3D medial axis) for analyzing and partitioning 3D shapes within various domains (medicine, material sciences, petroleum engineering, etc.) but only a few ones in soil sciences. Within the context of soil sciences, most studies dealing with 3D medial axis focus on the determination of pore throats. Here, we segment pore space using curvilinear skeleton in order to achieve numerical simulation of microbial decomposition (including diffusion processes). We validate simulation outputs by comparison with other methods using different pore space geometrical representations (balls, voxels).

Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences

Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.

A Survey of Quantization Methods for Efficient Neural Network Inference

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models

Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit. Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce Vector Post-Training Quantization (VPTQ) for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization. We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ. In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model. Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8times increase in inference throughput compared to SOTA.

Linguistic Structure Induction from Language Models

Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction.

SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training

In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.

Learning useful representations for shifting tasks and distributions

Does the dominant approach to learn representations (as a side effect of optimizing an expected cost for a single training distribution) remain a good approach when we are dealing with multiple distributions? Our thesis is that such scenarios are better served by representations that are richer than those obtained with a single optimization episode. We support this thesis with simple theoretical arguments and with experiments utilizing an apparently na\"{\i}ve ensembling technique: concatenating the representations obtained from multiple training episodes using the same data, model, algorithm, and hyper-parameters, but different random seeds. These independently trained networks perform similarly. Yet, in a number of scenarios involving new distributions, the concatenated representation performs substantially better than an equivalently sized network trained with a single training run. This proves that the representations constructed by multiple training episodes are in fact different. Although their concatenation carries little additional information about the training task under the training distribution, it becomes substantially more informative when tasks or distributions change. Meanwhile, a single training episode is unlikely to yield such a redundant representation because the optimization process has no reason to accumulate features that do not incrementally improve the training performance.

Word and Document Embeddings based on Neural Network Approaches

Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspiration to various domains. In natural language processing, the most widely used feature representation is the Bag-of-Words model. This model has the data sparsity problem and cannot keep the word order information. Other features such as part-of-speech tagging or more complex syntax features can only fit for specific tasks in most cases. This thesis focuses on word representation and document representation. We compare the existing systems and present our new model. First, for generating word embeddings, we make comprehensive comparisons among existing word embedding models. In terms of theory, we figure out the relationship between the two most important models, i.e., Skip-gram and GloVe. In our experiments, we analyze three key points in generating word embeddings, including the model construction, the training corpus and parameter design. We evaluate word embeddings with three types of tasks, and we argue that they cover the existing use of word embeddings. Through theory and practical experiments, we present some guidelines for how to generate a good word embedding. Second, in Chinese character or word representation. We introduce the joint training of Chinese character and word. ... Third, for document representation, we analyze the existing document representation models, including recursive NNs, recurrent NNs and convolutional NNs. We point out the drawbacks of these models and present our new model, the recurrent convolutional neural networks. ...

Learned feature representations are biased by complexity, learning order, position, and more

Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system's computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. These results also highlight a key challenge for interpretability - or for comparing the representations of models and brains - disentangling extraneous biases from the computationally important aspects of a system's internal representations.

A theory of representation learning gives a deep generalisation of kernel methods

The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM that scales linearly in the number of datapoints. Finally, we extend these approaches to NNs (which have non-Gaussian posteriors) in the Appendices.

PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers

Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.

One is All: Bridging the Gap Between Neural Radiance Fields Architectures with Progressive Volume Distillation

Neural Radiance Fields (NeRF) methods have proved effective as compact, high-quality and versatile representations for 3D scenes, and enable downstream tasks such as editing, retrieval, navigation, etc. Various neural architectures are vying for the core structure of NeRF, including the plain Multi-Layer Perceptron (MLP), sparse tensors, low-rank tensors, hashtables and their compositions. Each of these representations has its particular set of trade-offs. For example, the hashtable-based representations admit faster training and rendering but their lack of clear geometric meaning hampers downstream tasks like spatial-relation-aware editing. In this paper, we propose Progressive Volume Distillation (PVD), a systematic distillation method that allows any-to-any conversions between different architectures, including MLP, sparse or low-rank tensors, hashtables and their compositions. PVD consequently empowers downstream applications to optimally adapt the neural representations for the task at hand in a post hoc fashion. The conversions are fast, as distillation is progressively performed on different levels of volume representations, from shallower to deeper. We also employ special treatment of density to deal with its specific numerical instability problem. Empirical evidence is presented to validate our method on the NeRF-Synthetic, LLFF and TanksAndTemples datasets. For example, with PVD, an MLP-based NeRF model can be distilled from a hashtable-based Instant-NGP model at a 10X~20X faster speed than being trained the original NeRF from scratch, while achieving a superior level of synthesis quality. Code is available at https://github.com/megvii-research/AAAI2023-PVD.

Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs

Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.

Matryoshka Representation Learning

Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.

Positional Description Matters for Transformers Arithmetic

Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their vast capabilities --which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by modifying the positional encoding directly, or by modifying the representation of the arithmetic task to leverage standard positional encoding differently. We investigate the value of these modifications for three tasks: (i) classical multiplication, (ii) length extrapolation in addition, and (iii) addition in natural language context. For (i) we train a small model on a small dataset (100M parameters and 300k samples) with remarkable aptitude in (direct, no scratchpad) 15 digits multiplication and essentially perfect up to 12 digits, while usual training in this context would give a model failing at 4 digits multiplication. In the experiments on addition, we use a mere 120k samples to demonstrate: for (ii) extrapolation from 10 digits to testing on 12 digits numbers while usual training would have no extrapolation, and for (iii) almost perfect accuracy up to 5 digits while usual training would be correct only up to 3 digits (which is essentially memorization with a training set of 120k samples).

NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions

We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.

Implicit Neural Spatial Representations for Time-dependent PDEs

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/

Relative representations enable zero-shot latent space communication

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).

Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks

Learning feature representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work mostly embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features -- these embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, relatively little attention has been paid to the exact design of the neural network architectures these functional embeddings are combined with. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate the cross-product of positional embeddings and neural network architectures across various classification and regression benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. We provide source code at www.github.com/marccoru/locationencoder

Task structure and nonlinearity jointly determine learned representational geometry

The utility of a learned neural representation depends on how well its geometry supports performance in downstream tasks. This geometry depends on the structure of the inputs, the structure of the target outputs, and the architecture of the network. By studying the learning dynamics of networks with one hidden layer, we discovered that the network's activation function has an unexpectedly strong impact on the representational geometry: Tanh networks tend to learn representations that reflect the structure of the target outputs, while ReLU networks retain more information about the structure of the raw inputs. This difference is consistently observed across a broad class of parameterized tasks in which we modulated the degree of alignment between the geometry of the task inputs and that of the task labels. We analyzed the learning dynamics in weight space and show how the differences between the networks with Tanh and ReLU nonlinearities arise from the asymmetric asymptotic behavior of ReLU, which leads feature neurons to specialize for different regions of input space. By contrast, feature neurons in Tanh networks tend to inherit the task label structure. Consequently, when the target outputs are low dimensional, Tanh networks generate neural representations that are more disentangled than those obtained with a ReLU nonlinearity. Our findings shed light on the interplay between input-output geometry, nonlinearity, and learned representations in neural networks.

Neural networks behave as hash encoders: An empirical study

The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {\it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {\it neural code}; and (2) {\it categorization}: according to the neural code, simple algorithms, such as K-Means, K-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {\it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {\it model size}, {\it training time}, {\it training sample size}, {\it regularization}, and {\it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {\it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {\it under-expressive regime}, {\it critically-expressive regime}, and {\it sufficiently-expressive regime}. The source code package is available at https://github.com/LeavesLei/activation-code.

CodeGen2: Lessons for Training LLMs on Programming and Natural Languages

Large language models (LLMs) have demonstrated remarkable abilities in representation learning for program synthesis and understanding tasks. The quality of the learned representations appears to be dictated by the neural scaling laws as a function of the number of model parameters and observations, while imposing upper bounds on the model performance by the amount of available data and compute, which is costly. In this study, we attempt to render the training of LLMs for program synthesis more efficient by unifying four key components: (1) model architectures, (2) learning methods, (3) infill sampling, and, (4) data distributions. Specifically, for the model architecture, we attempt to unify encoder and decoder-based models into a single prefix-LM. For learning methods, (i) causal language modeling, (ii) span corruption, (iii) infilling are unified into a simple learning algorithm. For infill sampling, we explore the claim of a "free lunch" hypothesis. For data distributions, the effect of a mixture distribution of programming and natural languages on model performance is explored. We conduct a comprehensive series of empirical experiments on 1B LLMs, for which failures and successes of this exploration are distilled into four lessons. We will provide a final recipe for training and release CodeGen2 models in size 1B, 3.7B, 7B, and, 16B parameters, along with the training framework as open-source: https://github.com/salesforce/CodeGen2.

Improved Active Multi-Task Representation Learning via Lasso

To leverage the copious amount of data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, most existing works design a source task selection strategy from a purely empirical perspective. Recently, chen2022active gave the first active multi-task representation learning (A-MTRL) algorithm which adaptively samples from source tasks and can provably reduce the total sample complexity using the L2-regularized-target-source-relevance parameter nu^2. But their work is theoretically suboptimal in terms of total source sample complexity and is less practical in some real-world scenarios where sparse training source task selection is desired. In this paper, we address both issues. Specifically, we show the strict dominance of the L1-regularized-relevance-based (nu^1-based) strategy by giving a lower bound for the nu^2-based strategy. When nu^1 is unknown, we propose a practical algorithm that uses the LASSO program to estimate nu^1. Our algorithm successfully recovers the optimal result in the known case. In addition to our sample complexity results, we also characterize the potential of our nu^1-based strategy in sample-cost-sensitive settings. Finally, we provide experiments on real-world computer vision datasets to illustrate the effectiveness of our proposed method.

Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements

Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.

MgNO: Efficient Parameterization of Linear Operators via Multigrid

In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the i-th neuron in a nonlinear operator layer is defined by mathcal O_i(u) = sigmaleft( sum_j mathcal W_{ij} u + mathcal B_{ij}right). Here, mathcal W_{ij} denotes the bounded linear operator connecting j-th input neuron to i-th output neuron, and the bias mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).

Evolving Normalization-Activation Layers

Normalization layers and activation functions are fundamental components in deep networks and typically co-locate with each other. Here we propose to design them using an automated approach. Instead of designing them separately, we unify them into a single tensor-to-tensor computation graph, and evolve its structure starting from basic mathematical functions. Examples of such mathematical functions are addition, multiplication and statistical moments. The use of low-level mathematical functions, in contrast to the use of high-level modules in mainstream NAS, leads to a highly sparse and large search space which can be challenging for search methods. To address the challenge, we develop efficient rejection protocols to quickly filter out candidate layers that do not work well. We also use multi-objective evolution to optimize each layer's performance across many architectures to prevent overfitting. Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures that go beyond existing design patterns. For example, some EvoNorms do not assume that normalization and activation functions must be applied sequentially, nor need to center the feature maps, nor require explicit activation functions. Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets but also transfer well to Mask R-CNN with FPN/SpineNet for instance segmentation and to BigGAN for image synthesis, outperforming BatchNorm and GroupNorm based layers in many cases.

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

BT^2: Backward-compatible Training with Basis Transformation

Modern retrieval system often requires recomputing the representation of every piece of data in the gallery when updating to a better representation model. This process is known as backfilling and can be especially costly in the real world where the gallery often contains billions of samples. Recently, researchers have proposed the idea of Backward Compatible Training (BCT) where the new representation model can be trained with an auxiliary loss to make it backward compatible with the old representation. In this way, the new representation can be directly compared with the old representation, in principle avoiding the need for any backfilling. However, followup work shows that there is an inherent tradeoff where a backward compatible representation model cannot simultaneously maintain the performance of the new model itself. This paper reports our ``not-so-surprising'' finding that adding extra dimensions to the representation can help here. However, we also found that naively increasing the dimension of the representation did not work. To deal with this, we propose Backward-compatible Training with a novel Basis Transformation (BT^2). A basis transformation (BT) is basically a learnable set of parameters that applies an orthonormal transformation. Such a transformation possesses an important property whereby the original information contained in its input is retained in its output. We show in this paper how a BT can be utilized to add only the necessary amount of additional dimensions. We empirically verify the advantage of BT^2 over other state-of-the-art methods in a wide range of settings. We then further extend BT^2 to other challenging yet more practical settings, including significant change in model architecture (CNN to Transformers), modality change, and even a series of updates in the model architecture mimicking the evolution of deep learning models.

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

Semi-Parametric Neural Image Synthesis

Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.

PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations

The approximation of Partial Differential Equations (PDEs) using neural networks has seen significant advancements through Physics-Informed Neural Networks (PINNs). Despite their straightforward optimization framework and flexibility in implementing various PDEs, PINNs often suffer from limited accuracy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to effectively learn high-frequency and non-linear components. Recently, parametric mesh representations in combination with neural networks have been investigated as a promising approach to eliminate the inductive biases of neural networks. However, they usually require very high-resolution grids and a large number of collocation points to achieve high accuracy while avoiding overfitting issues. In addition, the fixed positions of the mesh parameters restrict their flexibility, making it challenging to accurately approximate complex PDEs. To overcome these limitations, we propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network. Our approach uses trainable parameters for the mean and variance of each Gaussian, allowing for dynamic adjustment of their positions and shapes during training. This adaptability enables our model to optimally approximate PDE solutions, unlike models with fixed parameter positions. Furthermore, the proposed approach maintains the same optimization framework used in PINNs, allowing us to benefit from their excellent properties. Experimental results show the competitive performance of our model across various PDEs, demonstrating its potential as a robust tool for solving complex PDEs. Our project page is available at https://namgyukang.github.io/Physics-Informed-Gaussians/

Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Recent work suggests that representations learned by adversarially robust networks are more human perceptually-aligned than non-robust networks via image manipulations. Despite appearing closer to human visual perception, it is unclear if the constraints in robust DNN representations match biological constraints found in human vision. Human vision seems to rely on texture-based/summary statistic representations in the periphery, which have been shown to explain phenomena such as crowding and performance on visual search tasks. To understand how adversarially robust optimizations/representations compare to human vision, we performed a psychophysics experiment using a set of metameric discrimination tasks where we evaluated how well human observers could distinguish between images synthesized to match adversarially robust representations compared to non-robust representations and a texture synthesis model of peripheral vision (Texforms). We found that the discriminability of robust representation and texture model images decreased to near chance performance as stimuli were presented farther in the periphery. Moreover, performance on robust and texture-model images showed similar trends within participants, while performance on non-robust representations changed minimally across the visual field. These results together suggest that (1) adversarially robust representations capture peripheral computation better than non-robust representations and (2) robust representations capture peripheral computation similar to current state-of-the-art texture peripheral vision models. More broadly, our findings support the idea that localized texture summary statistic representations may drive human invariance to adversarial perturbations and that the incorporation of such representations in DNNs could give rise to useful properties like adversarial robustness.

Pointer Networks

We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.

MatText: Do Language Models Need More than Text & Scale for Materials Modeling?

Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.

Mosaic-SDF for 3D Generative Models

Current diffusion or flow-based generative models for 3D shapes divide to two: distilling pre-trained 2D image diffusion models, and training directly on 3D shapes. When training a diffusion or flow models on 3D shapes a crucial design choice is the shape representation. An effective shape representation needs to adhere three design principles: it should allow an efficient conversion of large 3D datasets to the representation form; it should provide a good tradeoff of approximation power versus number of parameters; and it should have a simple tensorial form that is compatible with existing powerful neural architectures. While standard 3D shape representations such as volumetric grids and point clouds do not adhere to all these principles simultaneously, we advocate in this paper a new representation that does. We introduce Mosaic-SDF (M-SDF): a simple 3D shape representation that approximates the Signed Distance Function (SDF) of a given shape by using a set of local grids spread near the shape's boundary. The M-SDF representation is fast to compute for each shape individually making it readily parallelizable; it is parameter efficient as it only covers the space around the shape's boundary; and it has a simple matrix form, compatible with Transformer-based architectures. We demonstrate the efficacy of the M-SDF representation by using it to train a 3D generative flow model including class-conditioned generation with the 3D Warehouse dataset, and text-to-3D generation using a dataset of about 600k caption-shape pairs.

Binary Latent Diffusion

In this paper, we show that a binary latent space can be explored for compact yet expressive image representations. We model the bi-directional mappings between an image and the corresponding latent binary representation by training an auto-encoder with a Bernoulli encoding distribution. On the one hand, the binary latent space provides a compact discrete image representation of which the distribution can be modeled more efficiently than pixels or continuous latent representations. On the other hand, we now represent each image patch as a binary vector instead of an index of a learned cookbook as in discrete image representations with vector quantization. In this way, we obtain binary latent representations that allow for better image quality and high-resolution image representations without any multi-stage hierarchy in the latent space. In this binary latent space, images can now be generated effectively using a binary latent diffusion model tailored specifically for modeling the prior over the binary image representations. We present both conditional and unconditional image generation experiments with multiple datasets, and show that the proposed method performs comparably to state-of-the-art methods while dramatically improving the sampling efficiency to as few as 16 steps without using any test-time acceleration. The proposed framework can also be seamlessly scaled to 1024 times 1024 high-resolution image generation without resorting to latent hierarchy or multi-stage refinements.

A Neural Network Solves, Explains, and Generates University Math Problems by Program Synthesis and Few-Shot Learning at Human Level

We demonstrate that a neural network pre-trained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates new questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI's Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a new dataset of questions from MIT's largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University's Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pre-trained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8% to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work is the first to automatically solve university-level mathematics course questions at a human level and the first work to explain and generate university-level mathematics course questions at scale, a milestone for higher education.

Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling

Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20times speedup. In addition, our investigation raises doubts about whether MDMs can truly beat ARMs. We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, and the resulting decrease in token diversity makes previous evaluations, which assess the generation quality solely through the incomplete generative perplexity metric, somewhat unfair.

AdANNS: A Framework for Adaptive Semantic Search

Web-scale search systems learn an encoder to embed a given query which is then hooked into an approximate nearest neighbor search (ANNS) pipeline to retrieve similar data points. To accurately capture tail queries and data points, learned representations typically are rigid, high-dimensional vectors that are generally used as-is in the entire ANNS pipeline and can lead to computationally expensive retrieval. In this paper, we argue that instead of rigid representations, different stages of ANNS can leverage adaptive representations of varying capacities to achieve significantly better accuracy-compute trade-offs, i.e., stages of ANNS that can get away with more approximate computation should use a lower-capacity representation of the same data point. To this end, we introduce AdANNS, a novel ANNS design framework that explicitly leverages the flexibility of Matryoshka Representations. We demonstrate state-of-the-art accuracy-compute trade-offs using novel AdANNS-based key ANNS building blocks like search data structures (AdANNS-IVF) and quantization (AdANNS-OPQ). For example on ImageNet retrieval, AdANNS-IVF is up to 1.5% more accurate than the rigid representations-based IVF at the same compute budget; and matches accuracy while being up to 90x faster in wall-clock time. For Natural Questions, 32-byte AdANNS-OPQ matches the accuracy of the 64-byte OPQ baseline constructed using rigid representations -- same accuracy at half the cost! We further show that the gains from AdANNS translate to modern-day composite ANNS indices that combine search structures and quantization. Finally, we demonstrate that AdANNS can enable inference-time adaptivity for compute-aware search on ANNS indices built non-adaptively on matryoshka representations. Code is open-sourced at https://github.com/RAIVNLab/AdANNS.

Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures

Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.

Neural-Symbolic Recursive Machine for Systematic Generalization

Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.

Neural Processing of Tri-Plane Hybrid Neural Fields

Driven by the appealing properties of neural fields for storing and communicating 3D data, the problem of directly processing them to address tasks such as classification and part segmentation has emerged and has been investigated in recent works. Early approaches employ neural fields parameterized by shared networks trained on the whole dataset, achieving good task performance but sacrificing reconstruction quality. To improve the latter, later methods focus on individual neural fields parameterized as large Multi-Layer Perceptrons (MLPs), which are, however, challenging to process due to the high dimensionality of the weight space, intrinsic weight space symmetries, and sensitivity to random initialization. Hence, results turn out significantly inferior to those achieved by processing explicit representations, e.g., point clouds or meshes. In the meantime, hybrid representations, in particular based on tri-planes, have emerged as a more effective and efficient alternative to realize neural fields, but their direct processing has not been investigated yet. In this paper, we show that the tri-plane discrete data structure encodes rich information, which can be effectively processed by standard deep-learning machinery. We define an extensive benchmark covering a diverse set of fields such as occupancy, signed/unsigned distance, and, for the first time, radiance fields. While processing a field with the same reconstruction quality, we achieve task performance far superior to frameworks that process large MLPs and, for the first time, almost on par with architectures handling explicit representations.

PAC Generalization via Invariant Representations

One method for obtaining generalizable solutions to machine learning tasks when presented with diverse training environments is to find invariant representations of the data. These are representations of the covariates such that the best model on top of the representation is invariant across training environments. In the context of linear Structural Equation Models (SEMs), invariant representations might allow us to learn models with out-of-distribution guarantees, i.e., models that are robust to interventions in the SEM. To address the invariant representation problem in a {\em finite sample} setting, we consider the notion of epsilon-approximate invariance. We study the following question: If a representation is approximately invariant with respect to a given number of training interventions, will it continue to be approximately invariant on a larger collection of unseen SEMs? This larger collection of SEMs is generated through a parameterized family of interventions. Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees for approximate invariance that holds probabilistically over a family of linear SEMs without faithfulness assumptions. Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes. We also show how to extend our results to a linear indirect observation model that incorporates latent variables.

A Neural Space-Time Representation for Text-to-Image Personalization

A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.

Linguistic Collapse: Neural Collapse in (Large) Language Models

Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks

Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking on an ad or an item, is critical to many online applications such as online advertising and recommender systems. The problem is very challenging since (1) the input features (e.g., the user id, user age, item id, item category) are usually sparse and high-dimensional, and (2) an effective prediction relies on high-order combinatorial features (a.k.a. cross features), which are very time-consuming to hand-craft by domain experts and are impossible to be enumerated. Therefore, there have been efforts in finding low-dimensional representations of the sparse and high-dimensional raw features and their meaningful combinations. In this paper, we propose an effective and efficient method called the AutoInt to automatically learn the high-order feature interactions of input features. Our proposed algorithm is very general, which can be applied to both numerical and categorical input features. Specifically, we map both the numerical and categorical features into the same low-dimensional space. Afterwards, a multi-head self-attentive neural network with residual connections is proposed to explicitly model the feature interactions in the low-dimensional space. With different layers of the multi-head self-attentive neural networks, different orders of feature combinations of input features can be modeled. The whole model can be efficiently fit on large-scale raw data in an end-to-end fashion. Experimental results on four real-world datasets show that our proposed approach not only outperforms existing state-of-the-art approaches for prediction but also offers good explainability. Code is available at: https://github.com/DeepGraphLearning/RecommenderSystems.

2D Matryoshka Sentence Embeddings

Common approaches rely on fixed-length embedding vectors from language models as sentence embeddings for downstream tasks such as semantic textual similarity (STS). Such methods are limited in their flexibility due to unknown computational constraints and budgets across various applications. Matryoshka Representation Learning (MRL) (Kusupati et al., 2022) encodes information at finer granularities, i.e., with lower embedding dimensions, to adaptively accommodate ad hoc tasks. Similar accuracy can be achieved with a smaller embedding size, leading to speedups in downstream tasks. Despite its improved efficiency, MRL still requires traversing all Transformer layers before obtaining the embedding, which remains the dominant factor in time and memory consumption. This prompts consideration of whether the fixed number of Transformer layers affects representation quality and whether using intermediate layers for sentence representation is feasible. In this paper, we introduce a novel sentence embedding model called Two-dimensional Matryoshka Sentence Embedding (2DMSE). It supports elastic settings for both embedding sizes and Transformer layers, offering greater flexibility and efficiency than MRL. We conduct extensive experiments on STS tasks and downstream applications. The experimental results demonstrate the effectiveness of our proposed model in dynamically supporting different embedding sizes and Transformer layers, allowing it to be highly adaptable to various scenarios.

SESA: Supervised Explicit Semantic Analysis

In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.

Grounded Language Acquisition From Object and Action Imagery

Deep learning approaches to natural language processing have made great strides in recent years. While these models produce symbols that convey vast amounts of diverse knowledge, it is unclear how such symbols are grounded in data from the world. In this paper, we explore the development of a private language for visual data representation by training emergent language (EL) encoders/decoders in both i) a traditional referential game environment and ii) a contrastive learning environment utilizing a within-class matching training paradigm. An additional classification layer utilizing neural machine translation and random forest classification was used to transform symbolic representations (sequences of integer symbols) to class labels. These methods were applied in two experiments focusing on object recognition and action recognition. For object recognition, a set of sketches produced by human participants from real imagery was used (Sketchy dataset) and for action recognition, 2D trajectories were generated from 3D motion capture systems (MOVI dataset). In order to interpret the symbols produced for data in each experiment, gradient-weighted class activation mapping (Grad-CAM) methods were used to identify pixel regions indicating semantic features which contribute evidence towards symbols in learned languages. Additionally, a t-distributed stochastic neighbor embedding (t-SNE) method was used to investigate embeddings learned by CNN feature extractors.

The Impact of Positional Encoding on Length Generalization in Transformers

Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.