Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGrounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval
The hallucinations of large language models (LLMs) are increasingly mitigated by allowing LLMs to search for information and to ground their answers in real sources. Unfortunately, LLMs often struggle with posing the right search queries, especially when dealing with complex or otherwise indirect topics. Observing that LLMs can learn to search for relevant facts by trying different queries and learning to up-weight queries that successfully produce relevant results, we introduce Learning to Retrieve by Trying (LeReT), a reinforcement learning framework that explores search queries and uses preference-based optimization to improve their quality. LeReT can improve the absolute retrieval accuracy by up to 29% and the downstream generator evaluations by 17%. The simplicity and flexibility of LeReT allows it to be applied to arbitrary off-the-shelf retrievers and makes it a promising technique for improving general LLM pipelines. Project website: http://sherylhsu.com/LeReT/.
SIFT: Grounding LLM Reasoning in Contexts via Stickers
This paper identifies the misinterpretation of the context can be a significant issue during the reasoning process of large language models, spanning from smaller models like Llama3.2-3B-Instruct to cutting-edge ones like DeepSeek-R1. For example, in the phrase "10 dollars per kilo," LLMs might not recognize that "per" means "for each," leading to calculation errors. We introduce a novel, post-training approach called **Stick to the Facts (SIFT)** to tackle this. SIFT leverages increasing inference-time compute to ground LLM reasoning in contexts. At the core of SIFT lies the *Sticker*, which is generated by the model itself to explicitly emphasize the key information within the context. Given the curated Sticker, SIFT generates two predictions -- one from the original query and one from the query augmented with the Sticker. If they differ, the Sticker is sequentially refined via *forward* optimization (to better align the extracted facts with the query) and *inverse* generation (to conform with the model's inherent tendencies) for more faithful reasoning outcomes. Studies across diverse models (from 3B to 100B+) and benchmarks (e.g., GSM8K, MATH-500) reveal consistent performance improvements. Notably, SIFT improves the pass@1 accuracy of DeepSeek-R1 on AIME2024 from 78.33% to **85.67**%, establishing a new state-of-the-art in the open-source community. The code is available at https://github.com/zhijie-group/SIFT.
Identifying Factual Inconsistencies in Summaries: Grounding Model Inference via Task Taxonomy
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models. While a major direction to enhance inconsistency detection is to derive stronger Natural Language Inference (NLI) models, we propose an orthogonal aspect that underscores the importance of incorporating task-specific taxonomy into the inference. To this end, we consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs. Extensive experiments on ten datasets of five distinct domains suggest that, zero-shot LLM inference could benefit from the explicit solution space depicted by the error type taxonomy, and achieves state-of-the-art performance overall, surpassing specialized non-LLM baselines, as well as recent LLM baselines. We further distill models that fuse the taxonomy into parameters through our designed prompt completions and supervised training strategies, efficiently substituting state-of-the-art zero-shot inference with much larger LLMs.
WikiChat: Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia
This paper presents the first few-shot LLM-based chatbot that almost never hallucinates and has high conversationality and low latency. WikiChat is grounded on the English Wikipedia, the largest curated free-text corpus. WikiChat generates a response from an LLM, retains only the grounded facts, and combines them with additional information it retrieves from the corpus to form factual and engaging responses. We distill WikiChat based on GPT-4 into a 7B-parameter LLaMA model with minimal loss of quality, to significantly improve its latency, cost and privacy, and facilitate research and deployment. Using a novel hybrid human-and-LLM evaluation methodology, we show that our best system achieves 97.3% factual accuracy in simulated conversations. It significantly outperforms all retrieval-based and LLM-based baselines, and by 3.9%, 38.6% and 51.0% on head, tail and recent knowledge compared to GPT-4. Compared to previous state-of-the-art retrieval-based chatbots, WikiChat is also significantly more informative and engaging, just like an LLM. WikiChat achieves 97.9% factual accuracy in conversations with human users about recent topics, 55.0% better than GPT-4, while receiving significantly higher user ratings and more favorable comments.
Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs
Large Language Models (LLMs) often generate outputs that lack grounding in real-world facts, a phenomenon known as hallucinations. Prior research has associated hallucinations with model uncertainty, leveraging this relationship for hallucination detection and mitigation. In this paper, we challenge the underlying assumption that all hallucinations are associated with uncertainty. Using knowledge detection and uncertainty measurement methods, we demonstrate that models can hallucinate with high certainty even when they have the correct knowledge. We further show that high-certainty hallucinations are consistent across models and datasets, distinctive enough to be singled out, and challenge existing mitigation methods. Our findings reveal an overlooked aspect of hallucinations, emphasizing the need to understand their origins and improve mitigation strategies to enhance LLM safety. The code is available at https://github.com/technion-cs-nlp/Trust_me_Im_wrong .
Knowledge Enhanced Contextual Word Representations
Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert's runtime is comparable to BERT's and it scales to large KBs.
Grounding Conversations with Improvised Dialogues
Effective dialogue involves grounding, the process of establishing mutual knowledge that is essential for communication between people. Modern dialogue systems are not explicitly trained to build common ground, and therefore overlook this important aspect of communication. Improvisational theater (improv) intrinsically contains a high proportion of dialogue focused on building common ground, and makes use of the yes-and principle, a strong grounding speech act, to establish coherence and an actionable objective reality. We collect a corpus of more than 26,000 yes-and turns, transcribing them from improv dialogues and extracting them from larger, but more sparsely populated movie script dialogue corpora, via a bootstrapped classifier. We fine-tune chit-chat dialogue systems with our corpus to encourage more grounded, relevant conversation and confirm these findings with human evaluations.
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes theorem. One component is a traditional ungrounded response generation model and the other component models the reconstruction of the grounding document based on the dialog context and generated response. We propose different approximate decoding schemes and evaluate our approach on multiple open-domain and task-oriented document-grounded dialog datasets. Our experiments show that the model is more factual in terms of automatic factuality metrics than the baseline model. Furthermore, we outline how introducing scaling factors between the components allows for controlling the tradeoff between factuality and fluency in the model output. Finally, we compare our approach to a recently proposed method to control factuality in grounded dialog, CTRL (arXiv:2107.06963), and show that both approaches can be combined to achieve additional improvements.
G^2: Enhance Knowledge Grounded Dialogue via Ground Graph
Knowledge grounded dialogue system is designed to generate responses that convey information from given knowledge documents. However, it's a challenge for the current Seq2Seq model to acquire knowledge from complex documents and integrate it to perform correct responses without the aid of an explicit semantic structure. To address these issues, we present a novel graph structure, Ground Graph (G^2), which models the semantic structure of both dialogue contexts and knowledge documents to facilitate knowledge selection and integration for the task. Besides, a Ground Graph Aware Transformer (G^2AT) is proposed to enhance knowledge grounded response generation. Empirical results show that our proposed model outperforms previous state-of-the-art methods with more than 10\% and 20\% gains on response generation and factual consistency. Furthermore, our structure-aware approach shows excellent generalization ability in resource-limited situations.
CsFEVER and CTKFacts: Acquiring Czech data for fact verification
In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data.
Graph vs. Sequence: An Empirical Study on Knowledge Forms for Knowledge-Grounded Dialogue
Knowledge-grounded dialogue is a task of generating an informative response based on both the dialogue history and external knowledge source. In general, there are two forms of knowledge: manually annotated knowledge graphs and knowledge text from website. From various evaluation viewpoints, each type of knowledge has advantages and downsides. To further distinguish the principles and determinants from the intricate factors, we conduct a thorough experiment and study on the task to answer three essential questions. The questions involve the choice of appropriate knowledge form, the degree of mutual effects between knowledge and the model selection, and the few-shot performance of knowledge. Supported by statistical shreds of evidence, we offer conclusive solutions and sensible suggestions for directions and standards of future research.
LaMDA: Language Models for Dialog Applications
We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.
MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents
Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of "fact-checking" are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to LLMs to check a single response. In this work, we show how to build small models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify pre-existing datasets into a benchmark LLM-AggreFact, collected from recent work on fact-checking and grounding LLM generations. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.
Language with Vision: a Study on Grounded Word and Sentence Embeddings
Language grounding to vision is an active field of research aiming to enrich text-based representations of word meanings by leveraging perceptual knowledge from vision. Despite many attempts at language grounding, it is still unclear how to effectively inject visual knowledge into the word embeddings of a language in such a way that a proper balance of textual and visual knowledge is maintained. Some common concerns are the following. Is visual grounding beneficial for abstract words or is its contribution only limited to concrete words? What is the optimal way of bridging the gap between text and vision? How much do we gain by visually grounding textual embeddings? The present study addresses these questions by proposing a simple yet very effective grounding approach for pre-trained word embeddings. Our model aligns textual embeddings with vision while largely preserving the distributional statistics that characterize word use in text corpora. By applying a learned alignment, we are able to generate visually grounded embeddings for unseen words, including abstract words. A series of evaluations on word similarity benchmarks shows that visual grounding is beneficial not only for concrete words, but also for abstract words. We also show that our method for visual grounding offers advantages for contextualized embeddings, but only when these are trained on corpora of relatively modest size. Code and grounded embeddings for English are available at https://github.com/Hazel1994/Visually_Grounded_Word_Embeddings_2.
ScienceWorld: Is your Agent Smarter than a 5th Grader?
We present ScienceWorld, a benchmark to test agents' scientific reasoning abilities in a new interactive text environment at the level of a standard elementary school science curriculum. Despite the transformer-based progress seen in question-answering and scientific text processing, we find that current models cannot reason about or explain learned science concepts in novel contexts. For instance, models can easily answer what the conductivity of a known material is but struggle when asked how they would conduct an experiment in a grounded environment to find the conductivity of an unknown material. This begs the question of whether current models are simply retrieving answers by way of seeing a large number of similar examples or if they have learned to reason about concepts in a reusable manner. We hypothesize that agents need to be grounded in interactive environments to achieve such reasoning capabilities. Our experiments provide empirical evidence supporting this hypothesis -- showing that a 1.5 million parameter agent trained interactively for 100k steps outperforms a 11 billion parameter model statically trained for scientific question-answering and reasoning from millions of expert demonstrations.
Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation
Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.
The State of Human-centered NLP Technology for Fact-checking
Misinformation threatens modern society by promoting distrust in science, changing narratives in public health, heightening social polarization, and disrupting democratic elections and financial markets, among a myriad of other societal harms. To address this, a growing cadre of professional fact-checkers and journalists provide high-quality investigations into purported facts. However, these largely manual efforts have struggled to match the enormous scale of the problem. In response, a growing body of Natural Language Processing (NLP) technologies have been proposed for more scalable fact-checking. Despite tremendous growth in such research, however, practical adoption of NLP technologies for fact-checking still remains in its infancy today. In this work, we review the capabilities and limitations of the current NLP technologies for fact-checking. Our particular focus is to further chart the design space for how these technologies can be harnessed and refined in order to better meet the needs of human fact-checkers. To do so, we review key aspects of NLP-based fact-checking: task formulation, dataset construction, modeling, and human-centered strategies, such as explainable models and human-in-the-loop approaches. Next, we review the efficacy of applying NLP-based fact-checking tools to assist human fact-checkers. We recommend that future research include collaboration with fact-checker stakeholders early on in NLP research, as well as incorporation of human-centered design practices in model development, in order to further guide technology development for human use and practical adoption. Finally, we advocate for more research on benchmark development supporting extrinsic evaluation of human-centered fact-checking technologies.
RECKONING: Reasoning through Dynamic Knowledge Encoding
Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., in-context reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the knowledge that is necessary to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question. Our method, RECKONING, is a bi-level learning algorithm that teaches language models to reason by updating their parametric knowledge through back-propagation, allowing them to then answer questions using the updated parameters. During training, the inner loop rapidly adapts a copy of the model weights to encode contextual knowledge into its parameters. In the outer loop, the model learns to use the updated weights to reproduce and answer reasoning questions about the memorized knowledge. Our experiments on two multi-hop reasoning datasets show that RECKONING's performance improves over the in-context reasoning baseline (by up to 4.5%). We also find that compared to in-context reasoning, RECKONING generalizes better to longer reasoning chains unseen during training, is more robust to distractors in the context, and is more computationally efficient when multiple questions are asked about the same knowledge.
The Earth is Flat because...: Investigating LLMs' Belief towards Misinformation via Persuasive Conversation
Large Language Models (LLMs) encapsulate vast amounts of knowledge but still remain vulnerable to external misinformation. Existing research mainly studied this susceptibility behavior in a single-turn setting. However, belief can change during a multi-turn conversation, especially a persuasive one. Therefore, in this study, we delve into LLMs' susceptibility to persuasive conversations, particularly on factual questions that they can answer correctly. We first curate the Farm (i.e., Fact to Misinform) dataset, which contains factual questions paired with systematically generated persuasive misinformation. Then, we develop a testing framework to track LLMs' belief changes in a persuasive dialogue. Through extensive experiments, we find that LLMs' correct beliefs on factual knowledge can be easily manipulated by various persuasive strategies.
Sequential Latent Knowledge Selection for Knowledge-Grounded Dialogue
Knowledge-grounded dialogue is a task of generating an informative response based on both discourse context and external knowledge. As we focus on better modeling the knowledge selection in the multi-turn knowledge-grounded dialogue, we propose a sequential latent variable model as the first approach to this matter. The model named sequential knowledge transformer (SKT) can keep track of the prior and posterior distribution over knowledge; as a result, it can not only reduce the ambiguity caused from the diversity in knowledge selection of conversation but also better leverage the response information for proper choice of knowledge. Our experimental results show that the proposed model improves the knowledge selection accuracy and subsequently the performance of utterance generation. We achieve the new state-of-the-art performance on Wizard of Wikipedia (Dinan et al., 2019) as one of the most large-scale and challenging benchmarks. We further validate the effectiveness of our model over existing conversation methods in another knowledge-based dialogue Holl-E dataset (Moghe et al., 2018).
TRUE: Re-evaluating Factual Consistency Evaluation
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.
On Evaluating Explanation Utility for Human-AI Decision Making in NLP
Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations aid people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To help with this, we first review fitting existing metrics. We then establish requirements for datasets to be suitable for application-grounded evaluations. Among over 50 datasets available for explainability research in NLP, we find that 4 meet our criteria. By finetuning Flan-T5-3B, we demonstrate the importance of reassessing the state of the art to form and study human-AI teams. Finally, we present the exemplar studies of human-AI decision-making for one of the identified suitable tasks -- verifying the correctness of a legal claim given a contract.
Contrastive Learning for Inference in Dialogue
Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap -- which distinguishes inductive and deductive reasoning (Johnson-Laird, 1988, 1993). Our analysis reveals that the disparity in information between dialogue contexts and desired inferences poses a significant challenge to the inductive inference process. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.
AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators
With the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim detection, the first step in a fact-checking pipeline, suffers from two key issues that limit its scalability and generalizability: (1) inconsistency in definitions of the task and what a claim is, and (2) the high cost of manual annotation. To address (1), we review the definitions in related work and propose a unifying definition of factual claims that focuses on verifiability. To address (2), we introduce AFaCTA (Automatic Factual Claim deTection Annotator), a novel framework that assists in the annotation of factual claims with the help of large language models (LLMs). AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths. Extensive evaluation and experiments in the domain of political speech reveal that AFaCTA can efficiently assist experts in annotating factual claims and training high-quality classifiers, and can work with or without expert supervision. Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries (~ 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task. We evaluate multiple LLMs on the created causal queries and find that causal reasoning is challenging even for activities trivial to humans. We further explore (the causal reasoning abilities of LLMs) using the backdoor criterion to determine the causal strength between events.
Explainable Automated Fact-Checking for Public Health Claims
Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.
Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals
In many domains of argumentation, people's arguments are driven by so-called attitude roots, i.e., underlying beliefs and world views, and their corresponding attitude themes. Given the strength of these latent drivers of arguments, recent work in psychology suggests that instead of directly countering surface-level reasoning (e.g., falsifying given premises), one should follow an argumentation style inspired by the Jiu-Jitsu 'soft' combat system (Hornsey and Fielding, 2017): first, identify an arguer's attitude roots and themes, and then choose a prototypical rebuttal that is aligned with those drivers instead of invalidating those. In this work, we are the first to explore Jiu-Jitsu argumentation for peer review by proposing the novel task of attitude and theme-guided rebuttal generation. To this end, we enrich an existing dataset for discourse structure in peer reviews with attitude roots, attitude themes, and canonical rebuttals. To facilitate this process, we recast established annotation concepts from the domain of peer reviews (e.g., aspects a review sentence is relating to) and train domain-specific models. We then propose strong rebuttal generation strategies, which we benchmark on our novel dataset for the task of end-to-end attitude and theme-guided rebuttal generation and two subtasks.
Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension
Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.
DetermiNet: A Large-Scale Diagnostic Dataset for Complex Visually-Grounded Referencing using Determiners
State-of-the-art visual grounding models can achieve high detection accuracy, but they are not designed to distinguish between all objects versus only certain objects of interest. In natural language, in order to specify a particular object or set of objects of interest, humans use determiners such as "my", "either" and "those". Determiners, as an important word class, are a type of schema in natural language about the reference or quantity of the noun. Existing grounded referencing datasets place much less emphasis on determiners, compared to other word classes such as nouns, verbs and adjectives. This makes it difficult to develop models that understand the full variety and complexity of object referencing. Thus, we have developed and released the DetermiNet dataset , which comprises 250,000 synthetically generated images and captions based on 25 determiners. The task is to predict bounding boxes to identify objects of interest, constrained by the semantics of the given determiner. We find that current state-of-the-art visual grounding models do not perform well on the dataset, highlighting the limitations of existing models on reference and quantification tasks.
Q^{2}: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering
Neural knowledge-grounded generative models for dialogue often produce content that is factually inconsistent with the knowledge they rely on, making them unreliable and limiting their applicability. Inspired by recent work on evaluating factual consistency in abstractive summarization, we propose an automatic evaluation metric for factual consistency in knowledge-grounded dialogue using automatic question generation and question answering. Our metric, denoted Q^2, compares answer spans using natural language inference (NLI), instead of token-based matching as done in previous work. To foster proper evaluation, we curate a novel dataset of dialogue system outputs for the Wizard-of-Wikipedia dataset, manually annotated for factual consistency. We perform a thorough meta-evaluation of Q^2 against other metrics using this dataset and two others, where it consistently shows higher correlation with human judgements.
Evaluating the Ripple Effects of Knowledge Editing in Language Models
Modern language models capture a large body of factual knowledge. However, some facts can be incorrectly induced or become obsolete over time, resulting in factually incorrect generations. This has led to the development of various editing methods that allow updating facts encoded by the model. Evaluation of these methods has primarily focused on testing whether an individual fact has been successfully injected, and if similar predictions for other subjects have not changed. Here we argue that such evaluation is limited, since injecting one fact (e.g. ``Jack Depp is the son of Johnny Depp'') introduces a ``ripple effect'' in the form of additional facts that the model needs to update (e.g.``Jack Depp is the sibling of Lily-Rose Depp''). To address this issue, we propose a novel set of evaluation criteria that consider the implications of an edit on related facts. Using these criteria, we then construct , a diagnostic benchmark of 5K factual edits, capturing a variety of types of ripple effects. We evaluate prominent editing methods on , showing that current methods fail to introduce consistent changes in the model's knowledge. In addition, we find that a simple in-context editing baseline obtains the best scores on our benchmark, suggesting a promising research direction for model editing.
FactKG: Fact Verification via Reasoning on Knowledge Graphs
In real world applications, knowledge graphs (KG) are widely used in various domains (e.g. medical applications and dialogue agents). However, for fact verification, KGs have not been adequately utilized as a knowledge source. KGs can be a valuable knowledge source in fact verification due to their reliability and broad applicability. A KG consists of nodes and edges which makes it clear how concepts are linked together, allowing machines to reason over chains of topics. However, there are many challenges in understanding how these machine-readable concepts map to information in text. To enable the community to better use KGs, we introduce a new dataset, FactKG: Fact Verification via Reasoning on Knowledge Graphs. It consists of 108k natural language claims with five types of reasoning: One-hop, Conjunction, Existence, Multi-hop, and Negation. Furthermore, FactKG contains various linguistic patterns, including colloquial style claims as well as written style claims to increase practicality. Lastly, we develop a baseline approach and analyze FactKG over these reasoning types. We believe FactKG can advance both reliability and practicality in KG-based fact verification.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Call for Customized Conversation: Customized Conversation Grounding Persona and Knowledge
Humans usually have conversations by making use of prior knowledge about a topic and background information of the people whom they are talking to. However, existing conversational agents and datasets do not consider such comprehensive information, and thus they have a limitation in generating the utterances where the knowledge and persona are fused properly. To address this issue, we introduce a call For Customized conversation (FoCus) dataset where the customized answers are built with the user's persona and Wikipedia knowledge. To evaluate the abilities to make informative and customized utterances of pre-trained language models, we utilize BART and GPT-2 as well as transformer-based models. We assess their generation abilities with automatic scores and conduct human evaluations for qualitative results. We examine whether the model reflects adequate persona and knowledge with our proposed two sub-tasks, persona grounding (PG) and knowledge grounding (KG). Moreover, we show that the utterances of our data are constructed with the proper knowledge and persona through grounding quality assessment.
Do Large Language Models Know about Facts?
Large language models (LLMs) have recently driven striking performance improvements across a range of natural language processing tasks. The factual knowledge acquired during pretraining and instruction tuning can be useful in various downstream tasks, such as question answering, and language generation. Unlike conventional Knowledge Bases (KBs) that explicitly store factual knowledge, LLMs implicitly store facts in their parameters. Content generated by the LLMs can often exhibit inaccuracies or deviations from the truth, due to facts that can be incorrectly induced or become obsolete over time. To this end, we aim to comprehensively evaluate the extent and scope of factual knowledge within LLMs by designing the benchmark Pinocchio. Pinocchio contains 20K diverse factual questions that span different sources, timelines, domains, regions, and languages. Furthermore, we investigate whether LLMs are able to compose multiple facts, update factual knowledge temporally, reason over multiple pieces of facts, identify subtle factual differences, and resist adversarial examples. Extensive experiments on different sizes and types of LLMs show that existing LLMs still lack factual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing trustworthy artificial intelligence. The dataset Pinocchio and our codes will be publicly available.
ScanReason: Empowering 3D Visual Grounding with Reasoning Capabilities
Although great progress has been made in 3D visual grounding, current models still rely on explicit textual descriptions for grounding and lack the ability to reason human intentions from implicit instructions. We propose a new task called 3D reasoning grounding and introduce a new benchmark ScanReason which provides over 10K question-answer-location pairs from five reasoning types that require the synerization of reasoning and grounding. We further design our approach, ReGround3D, composed of the visual-centric reasoning module empowered by Multi-modal Large Language Model (MLLM) and the 3D grounding module to obtain accurate object locations by looking back to the enhanced geometry and fine-grained details from the 3D scenes. A chain-of-grounding mechanism is proposed to further boost the performance with interleaved reasoning and grounding steps during inference. Extensive experiments on the proposed benchmark validate the effectiveness of our proposed approach.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
When large language models are aligned via supervised fine-tuning, they may encounter new factual information that was not acquired through pre-training. It is often conjectured that this can teach the model the behavior of hallucinating factually incorrect responses, as the model is trained to generate facts that are not grounded in its pre-existing knowledge. In this work, we study the impact of such exposure to new knowledge on the capability of the fine-tuned model to utilize its pre-existing knowledge. To this end, we design a controlled setup, focused on closed-book QA, where we vary the proportion of the fine-tuning examples that introduce new knowledge. We demonstrate that large language models struggle to acquire new factual knowledge through fine-tuning, as fine-tuning examples that introduce new knowledge are learned significantly slower than those consistent with the model's knowledge. However, we also find that as the examples with new knowledge are eventually learned, they linearly increase the model's tendency to hallucinate. Taken together, our results highlight the risk in introducing new factual knowledge through fine-tuning, and support the view that large language models mostly acquire factual knowledge through pre-training, whereas fine-tuning teaches them to use it more efficiently.
Smoothing Grounding and Reasoning for MLLM-Powered GUI Agents with Query-Oriented Pivot Tasks
Perception-enhanced pre-training, particularly through grounding techniques, is widely adopted to enhance the performance of graphical user interface (GUI) agents. However, in resource-constrained scenarios, the format discrepancy between coordinate-oriented grounding and action-oriented reasoning limits the effectiveness of grounding for reasoning tasks. To address this challenge, we propose a query-oriented pivot approach called query inference, which serves as a bridge between GUI grounding and reasoning. By inferring potential user queries from a screenshot and its associated element coordinates, query inference improves the understanding of coordinates while aligning more closely with reasoning tasks. Experimental results show that query inference outperforms previous grounding techniques under the same training data scale. Notably, query inference achieves comparable or even better performance to large-scale grounding-enhanced OS-Atlas with less than 0.1% of training data. Furthermore, we explore the impact of reasoning formats and demonstrate that integrating additional semantic information into the input further boosts reasoning performance. The code is publicly available at https://github.com/ZrW00/GUIPivot.
There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning
Knowledge-grounded conversation (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, the existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.
MAIRA-2: Grounded Radiology Report Generation
Radiology reporting is a complex task that requires detailed image understanding, integration of multiple inputs, including comparison with prior imaging, and precise language generation. This makes it ideal for the development and use of generative multimodal models. Here, we extend report generation to include the localisation of individual findings on the image - a task we call grounded report generation. Prior work indicates that grounding is important for clarifying image understanding and interpreting AI-generated text. Therefore, grounded reporting stands to improve the utility and transparency of automated report drafting. To enable evaluation of grounded reporting, we propose a novel evaluation framework - RadFact - leveraging the reasoning capabilities of large language models (LLMs). RadFact assesses the factuality of individual generated sentences, as well as correctness of generated spatial localisations when present. We introduce MAIRA-2, a large multimodal model combining a radiology-specific image encoder with a LLM, and trained for the new task of grounded report generation on chest X-rays. MAIRA-2 uses more comprehensive inputs than explored previously: the current frontal image, the current lateral image, the prior frontal image and prior report, as well as the Indication, Technique and Comparison sections of the current report. We demonstrate that these additions significantly improve report quality and reduce hallucinations, establishing a new state of the art on findings generation (without grounding) on MIMIC-CXR while demonstrating the feasibility of grounded reporting as a novel and richer task.
GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
From Internal Conflict to Contextual Adaptation of Language Models
Knowledge-intensive language understanding tasks require Language Models (LMs) to integrate relevant context, mitigating their inherent weaknesses, such as incomplete or outdated knowledge. Nevertheless, studies indicate that LMs often ignore the provided context as it can conflict with the pre-existing LM's memory learned during pre-training. Moreover, conflicting knowledge can already be present in the LM's parameters, termed intra-memory conflict. Existing works have studied the two types of knowledge conflicts only in isolation. We conjecture that the (degree of) intra-memory conflicts can in turn affect LM's handling of context-memory conflicts. To study this, we introduce the DYNAMICQA dataset, which includes facts with a temporal dynamic nature where a fact can change with a varying time frequency and disputable dynamic facts, which can change depending on the viewpoint. DYNAMICQA is the first to include real-world knowledge conflicts and provide context to study the link between the different types of knowledge conflicts. With the proposed dataset, we assess the use of uncertainty for measuring the intra-memory conflict and introduce a novel Coherent Persuasion (CP) score to evaluate the context's ability to sway LM's semantic output. Our extensive experiments reveal that static facts, which are unlikely to change, are more easily updated with additional context, relative to temporal and disputable facts.
Show Me the Work: Fact-Checkers' Requirements for Explainable Automated Fact-Checking
The pervasiveness of large language models and generative AI in online media has amplified the need for effective automated fact-checking to assist fact-checkers in tackling the increasing volume and sophistication of misinformation. The complex nature of fact-checking demands that automated fact-checking systems provide explanations that enable fact-checkers to scrutinise their outputs. However, it is unclear how these explanations should align with the decision-making and reasoning processes of fact-checkers to be effectively integrated into their workflows. Through semi-structured interviews with fact-checking professionals, we bridge this gap by: (i) providing an account of how fact-checkers assess evidence, make decisions, and explain their processes; (ii) examining how fact-checkers use automated tools in practice; and (iii) identifying fact-checker explanation requirements for automated fact-checking tools. The findings show unmet explanation needs and identify important criteria for replicable fact-checking explanations that trace the model's reasoning path, reference specific evidence, and highlight uncertainty and information gaps.
Language Models as Inductive Reasoners
Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.
FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs
Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social media content that aligns with, contradicts, or is irrelevant to previously debunked claims. Our evaluation shows that our specialized LLMs can match the accuracy of larger models in identifying related claims, closely mirroring human judgment. This research provides an automated solution for efficient claim matching, demonstrates the potential of LLMs in supporting fact-checkers, and offers valuable resources for further research in the field.
Agents Thinking Fast and Slow: A Talker-Reasoner Architecture
Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.
A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering
Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language.
NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning
Visual Grounding (VG) tasks, such as referring expression detection and segmentation tasks are important for linking visual entities to context, especially in complex reasoning tasks that require detailed query interpretation. This paper explores VG beyond basic perception, highlighting challenges for methods that require reasoning like human cognition. Recent advances in large language methods (LLMs) and Vision-Language methods (VLMs) have improved abilities for visual comprehension, contextual understanding, and reasoning. These methods are mainly split into end-to-end and compositional methods, with the latter offering more flexibility. Compositional approaches that integrate LLMs and foundation models show promising performance but still struggle with complex reasoning with language-based logical representations. To address these limitations, we propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning within a finite-state automaton, equipped with a self-correcting mechanism. This design improves robustness and interpretability in inference through explicit logic reasoning. Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines. The code is available at https://github.com/ControlNet/NAVER .
FACT: Examining the Effectiveness of Iterative Context Rewriting for Multi-fact Retrieval
Large Language Models (LLMs) are proficient at retrieving single facts from extended contexts, yet they struggle with tasks requiring the simultaneous retrieval of multiple facts, especially during generation. This paper identifies a novel "lost-in-the-middle" phenomenon, where LLMs progressively lose track of critical information throughout the generation process, resulting in incomplete or inaccurate retrieval. To address this challenge, we introduce Find All Crucial Texts (FACT), an iterative retrieval method that refines context through successive rounds of rewriting. This approach enables models to capture essential facts incrementally, which are often overlooked in single-pass retrieval. Experiments demonstrate that FACT substantially enhances multi-fact retrieval performance across various tasks, though improvements are less notable in general-purpose QA scenarios. Our findings shed light on the limitations of LLMs in multi-fact retrieval and underscore the need for more resilient long-context retrieval strategies.
Entity-Based Knowledge Conflicts in Question Answering
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models
The escalating challenge of misinformation, particularly in the context of political discourse, necessitates advanced solutions for fact-checking. We introduce innovative approaches to enhance the reliability and efficiency of multimodal fact-checking through the integration of Large Language Models (LLMs) with Retrieval-augmented Generation (RAG)- based advanced reasoning techniques. This work proposes two novel methodologies, Chain of RAG (CoRAG) and Tree of RAG (ToRAG). The approaches are designed to handle multimodal claims by reasoning the next questions that need to be answered based on previous evidence. Our approaches improve the accuracy of veracity predictions and the generation of explanations over the traditional fact-checking approach of sub-question generation with chain of thought veracity prediction. By employing multimodal LLMs adept at analyzing both text and images, this research advances the capability of automated systems in identifying and countering misinformation.
Disagreement as a way to study misinformation and its effects
Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.
A Dataset for Document Grounded Conversations
This paper introduces a document grounded dataset for text conversations. We define "Document Grounded Conversations" as conversations that are about the contents of a specified document. In this dataset the specified documents were Wikipedia articles about popular movies. The dataset contains 4112 conversations with an average of 21.43 turns per conversation. This positions this dataset to not only provide a relevant chat history while generating responses but also provide a source of information that the models could use. We describe two neural architectures that provide benchmark performance on the task of generating the next response. We also evaluate our models for engagement and fluency, and find that the information from the document helps in generating more engaging and fluent responses.
FACTTRACK: Time-Aware World State Tracking in Story Outlines
While accurately detecting and correcting factual contradictions in language model outputs has become increasingly important as their capabilities improve, doing so is highly challenging. We propose a novel method, FACTTRACK, for tracking atomic facts and addressing factual contradictions. Crucially, FACTTRACK also maintains time-aware validity intervals for each fact, allowing for change over time. At a high level, FACTTRACK consists of a four-step pipeline to update a world state data structure for each new event: (1) decompose the event into directional atomic facts; (2) determine the validity interval of each atomic fact using the world state; (3) detect contradictions with existing facts in the world state; and finally (4) add new facts to the world state and update existing atomic facts. When we apply FACTTRACK to contradiction detection on structured story outlines, we find that FACTTRACK using LLaMA2-7B-Chat substantially outperforms a fair baseline using LLaMA2-7B-Chat, and achieves performance comparable to a GPT4 baseline. Moreover, when using GPT4, FACTTRACK significantly outperforms the GPT4 baseline.
FaaF: Facts as a Function for the evaluation of RAG systems
Factual recall from a reference source is crucial for evaluating the performance of Retrieval Augmented Generation (RAG) systems, as it directly probes into the quality of both retrieval and generation. However, it still remains a challenge to perform this evaluation reliably and efficiently. Recent work has focused on fact verification via prompting language model (LM) evaluators, however we demonstrate that these methods are unreliable in the presence of incomplete or inaccurate information. We introduce Facts as a Function (FaaF), a new approach to fact verification that utilizes the function calling abilities of LMs and a framework for RAG factual recall evaluation. FaaF substantially improves the ability of LMs to identify unsupported facts in text with incomplete information whilst improving efficiency and lowering cost by several times, compared to prompt-based approaches.
LLaVA-Grounding: Grounded Visual Chat with Large Multimodal Models
With the recent significant advancements in large multi-modal models (LMMs), the importance of their grounding capability in visual chat is increasingly recognized. Despite recent efforts to enable LMMs to support grounding, their capabilities for grounding and chat are usually separate, and their chat performance drops dramatically when asked to ground. The problem is the lack of a dataset for grounded visual chat (GVC). Existing grounding datasets only contain short captions. To address this issue, we have created GVC data that allows for the combination of grounding and chat capabilities. To better evaluate the GVC capabilities, we have introduced a benchmark called Grounding-Bench. Additionally, we have proposed a model design that can support GVC and various types of visual prompts by connecting segmentation models with language models. Experimental results demonstrate that our model outperforms other LMMs on Grounding-Bench. Furthermore, our model achieves competitive performance on classic grounding benchmarks like RefCOCO/+/g and Flickr30K Entities. Our code will be released at https://github.com/UX-Decoder/LLaVA-Grounding .
Using a KG-Copy Network for Non-Goal Oriented Dialogues
Non-goal oriented, generative dialogue systems lack the ability to generate answers with grounded facts. A knowledge graph can be considered an abstraction of the real world consisting of well-grounded facts. This paper addresses the problem of generating well grounded responses by integrating knowledge graphs into the dialogue systems response generation process, in an end-to-end manner. A dataset for nongoal oriented dialogues is proposed in this paper in the domain of soccer, conversing on different clubs and national teams along with a knowledge graph for each of these teams. A novel neural network architecture is also proposed as a baseline on this dataset, which can integrate knowledge graphs into the response generation process, producing well articulated, knowledge grounded responses. Empirical evidence suggests that the proposed model performs better than other state-of-the-art models for knowledge graph integrated dialogue systems.
Reinforcement Learning-based Counter-Misinformation Response Generation: A Case Study of COVID-19 Vaccine Misinformation
The spread of online misinformation threatens public health, democracy, and the broader society. While professional fact-checkers form the first line of defense by fact-checking popular false claims, they do not engage directly in conversations with misinformation spreaders. On the other hand, non-expert ordinary users act as eyes-on-the-ground who proactively counter misinformation -- recent research has shown that 96% counter-misinformation responses are made by ordinary users. However, research also found that 2/3 times, these responses are rude and lack evidence. This work seeks to create a counter-misinformation response generation model to empower users to effectively correct misinformation. This objective is challenging due to the absence of datasets containing ground-truth of ideal counter-misinformation responses, and the lack of models that can generate responses backed by communication theories. In this work, we create two novel datasets of misinformation and counter-misinformation response pairs from in-the-wild social media and crowdsourcing from college-educated students. We annotate the collected data to distinguish poor from ideal responses that are factual, polite, and refute misinformation. We propose MisinfoCorrect, a reinforcement learning-based framework that learns to generate counter-misinformation responses for an input misinformation post. The model rewards the generator to increase the politeness, factuality, and refutation attitude while retaining text fluency and relevancy. Quantitative and qualitative evaluation shows that our model outperforms several baselines by generating high-quality counter-responses. This work illustrates the promise of generative text models for social good -- here, to help create a safe and reliable information ecosystem. The code and data is accessible on https://github.com/claws-lab/MisinfoCorrect.
Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity
This survey addresses the crucial issue of factuality in Large Language Models (LLMs). As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital. We define the Factuality Issue as the probability of LLMs to produce content inconsistent with established facts. We first delve into the implications of these inaccuracies, highlighting the potential consequences and challenges posed by factual errors in LLM outputs. Subsequently, we analyze the mechanisms through which LLMs store and process facts, seeking the primary causes of factual errors. Our discussion then transitions to methodologies for evaluating LLM factuality, emphasizing key metrics, benchmarks, and studies. We further explore strategies for enhancing LLM factuality, including approaches tailored for specific domains. We focus two primary LLM configurations standalone LLMs and Retrieval-Augmented LLMs that utilizes external data, we detail their unique challenges and potential enhancements. Our survey offers a structured guide for researchers aiming to fortify the factual reliability of LLMs.
FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data
Prior research on training grounded factuality classification models to detect hallucinations in large language models (LLMs) has relied on public natural language inference (NLI) data and synthetic data. However, conventional NLI datasets are not well-suited for document-level reasoning, which is critical for detecting LLM hallucinations. Recent approaches to document-level synthetic data generation involve iteratively removing sentences from documents and annotating factuality using LLM-based prompts. While effective, this method is computationally expensive for long documents and limited by the LLM's capabilities. In this work, we analyze the differences between existing synthetic training data used in state-of-the-art models and real LLM output claims. Based on our findings, we propose a novel approach for synthetic data generation, CG2C, that leverages multi-hop reasoning on context graphs extracted from documents. Our fact checker model, FactCG, demonstrates improved performance with more connected reasoning, using the same backbone models. Experiments show it even outperforms GPT-4-o on the LLM-Aggrefact benchmark with much smaller model size.
Grounding Open-Domain Instructions to Automate Web Support Tasks
Grounding natural language instructions on the web to perform previously unseen tasks enables accessibility and automation. We introduce a task and dataset to train AI agents from open-domain, step-by-step instructions originally written for people. We build RUSS (Rapid Universal Support Service) to tackle this problem. RUSS consists of two models: First, a BERT-LSTM with pointers parses instructions to ThingTalk, a domain-specific language we design for grounding natural language on the web. Then, a grounding model retrieves the unique IDs of any webpage elements requested in ThingTalk. RUSS may interact with the user through a dialogue (e.g. ask for an address) or execute a web operation (e.g. click a button) inside the web runtime. To augment training, we synthesize natural language instructions mapped to ThingTalk. Our dataset consists of 80 different customer service problems from help websites, with a total of 741 step-by-step instructions and their corresponding actions. RUSS achieves 76.7% end-to-end accuracy predicting agent actions from single instructions. It outperforms state-of-the-art models that directly map instructions to actions without ThingTalk. Our user study shows that RUSS is preferred by actual users over web navigation.
DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification
We introduce semantic towers, an extrinsic knowledge representation method, and compare it to intrinsic knowledge in large language models for ontology learning. Our experiments show a trade-off between performance and semantic grounding for extrinsic knowledge compared to a fine-tuned model intrinsic knowledge. We report our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024 challenge.
Calibrating Factual Knowledge in Pretrained Language Models
Previous literature has proved that Pretrained Language Models (PLMs) can store factual knowledge. However, we find that facts stored in the PLMs are not always correct. It motivates us to explore a fundamental question: How do we calibrate factual knowledge in PLMs without re-training from scratch? In this work, we propose a simple and lightweight method CaliNet to achieve this goal. To be specific, we first detect whether PLMs can learn the right facts via a contrastive score between right and fake facts. If not, we then use a lightweight method to add and adapt new parameters to specific factual texts. Experiments on the knowledge probing task show the calibration effectiveness and efficiency. In addition, through closed-book question answering, we find that the calibrated PLM possesses knowledge generalization ability after fine-tuning. Beyond the calibration performance, we further investigate and visualize the knowledge calibration mechanism.
FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering
Automatic fact verification has received significant attention recently. Contemporary automatic fact-checking systems focus on estimating truthfulness using numerical scores which are not human-interpretable. A human fact-checker generally follows several logical steps to verify a verisimilitude claim and conclude whether its truthful or a mere masquerade. Popular fact-checking websites follow a common structure for fact categorization such as half true, half false, false, pants on fire, etc. Therefore, it is necessary to have an aspect-based (delineating which part(s) are true and which are false) explainable system that can assist human fact-checkers in asking relevant questions related to a fact, which can then be validated separately to reach a final verdict. In this paper, we propose a 5W framework (who, what, when, where, and why) for question-answer-based fact explainability. To that end, we present a semi-automatically generated dataset called FACTIFY-5WQA, which consists of 391, 041 facts along with relevant 5W QAs - underscoring our major contribution to this paper. A semantic role labeling system has been utilized to locate 5Ws, which generates QA pairs for claims using a masked language model. Finally, we report a baseline QA system to automatically locate those answers from evidence documents, which can serve as a baseline for future research in the field. Lastly, we propose a robust fact verification system that takes paraphrased claims and automatically validates them. The dataset and the baseline model are available at https: //github.com/ankuranii/acl-5W-QA
EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification
Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in the accuracy improvement, let alone the explainability, a critical capability of fact verification system. Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant high-quality dataset. Previous dataset either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EX-FEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification and observe that existing fact verification models trained on previous datasets struggle to perform well on our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.
MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation
Humans talk in free-form while negotiating the expressed meanings or common ground. Despite the impressive conversational abilities of the large generative language models, they do not consider the individual differences in contextual understanding in a shared situated environment. In this work, we propose MindDial, a novel conversational framework that can generate situated free-form responses to negotiate common ground. We design an explicit mind module that can track three-level beliefs -- the speaker's belief, the speaker's prediction of the listener's belief, and the common belief based on the gap between the first two. Then the speaking act classification head will decide to continue to talk, end this turn, or take task-related action. We augment a common ground alignment dataset MutualFriend with belief dynamics annotation, of which the goal is to find a single mutual friend based on the free chat between two agents. Experiments show that our model with mental state modeling can resemble human responses when aligning common ground meanwhile mimic the natural human conversation flow. The ablation study further validates the third-level common belief can aggregate information of the first and second-order beliefs and align common ground more efficiently.
DoRO: Disambiguation of referred object for embodied agents
Robotic task instructions often involve a referred object that the robot must locate (ground) within the environment. While task intent understanding is an essential part of natural language understanding, less effort is made to resolve ambiguity that may arise while grounding the task. Existing works use vision-based task grounding and ambiguity detection, suitable for a fixed view and a static robot. However, the problem magnifies for a mobile robot, where the ideal view is not known beforehand. Moreover, a single view may not be sufficient to locate all the object instances in the given area, which leads to inaccurate ambiguity detection. Human intervention is helpful only if the robot can convey the kind of ambiguity it is facing. In this article, we present DoRO (Disambiguation of Referred Object), a system that can help an embodied agent to disambiguate the referred object by raising a suitable query whenever required. Given an area where the intended object is, DoRO finds all the instances of the object by aggregating observations from multiple views while exploring & scanning the area. It then raises a suitable query using the information from the grounded object instances. Experiments conducted with the AI2Thor simulator show that DoRO not only detects the ambiguity more accurately but also raises verbose queries with more accurate information from the visual-language grounding.
PlaSma: Making Small Language Models Better Procedural Knowledge Models for (Counterfactual) Planning
Procedural planning, which entails decomposing a high-level goal into a sequence of temporally ordered steps, is an important yet intricate task for machines. It involves integrating common-sense knowledge to reason about complex contextualized situations that are often counterfactual, e.g. "scheduling a doctor's appointment without a phone". While current approaches show encouraging results using large language models (LLMs), they are hindered by drawbacks such as costly API calls and reproducibility issues. In this paper, we advocate planning using smaller language models. We present PlaSma, a novel two-pronged approach to endow small language models with procedural knowledge and (counterfactual) planning capabilities. More concretely, we develop symbolic procedural knowledge distillation to enhance the implicit knowledge in small language models and an inference-time algorithm to facilitate more structured and accurate reasoning. In addition, we introduce a novel task, Counterfactual Planning, that requires a revision of a plan to cope with a counterfactual situation. In both the original and counterfactual setting, we show that orders-of-magnitude smaller models (770M-11B parameters) can compete and often surpass their larger teacher models' capabilities.
Probing Across Time: What Does RoBERTa Know and When?
Models of language trained on very large corpora have been demonstrated useful for NLP. As fixed artifacts, they have become the object of intense study, with many researchers "probing" the extent to which linguistic abstractions, factual and commonsense knowledge, and reasoning abilities they acquire and readily demonstrate. Building on this line of work, we consider a new question: for types of knowledge a language model learns, when during (pre)training are they acquired? We plot probing performance across iterations, using RoBERTa as a case study. Among our findings: linguistic knowledge is acquired fast, stably, and robustly across domains. Facts and commonsense are slower and more domain-sensitive. Reasoning abilities are, in general, not stably acquired. As new datasets, pretraining protocols, and probes emerge, we believe that probing-across-time analyses can help researchers understand the complex, intermingled learning that these models undergo and guide us toward more efficient approaches that accomplish necessary learning faster.
Combating Misinformation in the Age of LLMs: Opportunities and Challenges
Misinformation such as fake news and rumors is a serious threat on information ecosystems and public trust. The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of combating misinformation. Generally, LLMs can be a double-edged sword in the fight. On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities. Thus, one emergent question is: how to utilize LLMs to combat misinformation? On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale. Then, another important question is: how to combat LLM-generated misinformation? In this paper, we first systematically review the history of combating misinformation before the advent of LLMs. Then we illustrate the current efforts and present an outlook for these two fundamental questions respectively. The goal of this survey paper is to facilitate the progress of utilizing LLMs for fighting misinformation and call for interdisciplinary efforts from different stakeholders for combating LLM-generated misinformation.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
Diversity Aware Relevance Learning for Argument Search
In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.
NewsEdits 2.0: Learning the Intentions Behind Updating News
As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy.
Towards Tracing Factual Knowledge in Language Models Back to the Training Data
Language models (LMs) have been shown to memorize a great deal of factual knowledge contained in their training data. But when an LM generates an assertion, it is often difficult to determine where it learned this information and whether it is true. In this paper, we propose the problem of fact tracing: identifying which training examples taught an LM to generate a particular factual assertion. Prior work on training data attribution (TDA) may offer effective tools for identifying such examples, known as "proponents". We present the first quantitative benchmark to evaluate this. We compare two popular families of TDA methods -- gradient-based and embedding-based -- and find that much headroom remains. For example, both methods have lower proponent-retrieval precision than an information retrieval baseline (BM25) that does not have access to the LM at all. We identify key challenges that may be necessary for further improvement such as overcoming the problem of gradient saturation, and also show how several nuanced implementation details of existing neural TDA methods can significantly improve overall fact tracing performance.
CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).
What Matters in Learning Facts in Language Models? Multifaceted Knowledge Probing with Diverse Multi-Prompt Datasets
Large language models (LLMs) face issues in handling factual knowledge, making it vital to evaluate their true ability to understand facts. In this study, we introduce knowledge probing frameworks, BELIEF(-ICL), to evaluate the knowledge understanding ability of not only encoder-based PLMs but also decoder-based PLMs from diverse perspectives. BELIEFs utilize a multi-prompt dataset to evaluate PLM's accuracy, consistency, and reliability in factual knowledge understanding. To provide a more reliable evaluation with BELIEFs, we semi-automatically create MyriadLAMA, which has more diverse prompts than existing datasets. We validate the effectiveness of BELIEFs in correctly and comprehensively evaluating PLM's factual understanding ability through extensive evaluations. We further investigate key factors in learning facts in LLMs, and reveal the limitation of the prompt-based knowledge probing. The dataset is anonymously publicized.
Towards Reliable Latent Knowledge Estimation in LLMs: In-Context Learning vs. Prompting Based Factual Knowledge Extraction
We propose an approach for estimating the latent knowledge embedded inside large language models (LLMs). We leverage the in-context learning (ICL) abilities of LLMs to estimate the extent to which an LLM knows the facts stored in a knowledge base. Our knowledge estimator avoids reliability concerns with previous prompting-based methods, is both conceptually simpler and easier to apply, and we demonstrate that it can surface more of the latent knowledge embedded in LLMs. We also investigate how different design choices affect the performance of ICL-based knowledge estimation. Using the proposed estimator, we perform a large-scale evaluation of the factual knowledge of a variety of open source LLMs, like OPT, Pythia, Llama(2), Mistral, Gemma, etc. over a large set of relations and facts from the Wikidata knowledge base. We observe differences in the factual knowledge between different model families and models of different sizes, that some relations are consistently better known than others but that models differ in the precise facts they know, and differences in the knowledge of base models and their finetuned counterparts.
NELA-GT-2018: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present a dataset of 713k articles collected between 02/2018-11/2018. These articles are collected directly from 194 news and media outlets including mainstream, hyper-partisan, and conspiracy sources. We incorporate ground truth ratings of the sources from 8 different assessment sites covering multiple dimensions of veracity, including reliability, bias, transparency, adherence to journalistic standards, and consumer trust. The NELA-GT-2018 dataset can be found at https://doi.org/10.7910/DVN/ULHLCB.
WildHallucinations: Evaluating Long-form Factuality in LLMs with Real-World Entity Queries
While hallucinations of large language models (LLMs) prevail as a major challenge, existing evaluation benchmarks on factuality do not cover the diverse domains of knowledge that the real-world users of LLMs seek information about. To bridge this gap, we introduce WildHallucinations, a benchmark that evaluates factuality. It does so by prompting LLMs to generate information about entities mined from user-chatbot conversations in the wild. These generations are then automatically fact-checked against a systematically curated knowledge source collected from web search. Notably, half of these real-world entities do not have associated Wikipedia pages. We evaluate 118,785 generations from 15 LLMs on 7,919 entities. We find that LLMs consistently hallucinate more on entities without Wikipedia pages and exhibit varying hallucination rates across different domains. Finally, given the same base models, adding a retrieval component only slightly reduces hallucinations but does not eliminate hallucinations.
Toward Grounded Social Reasoning
Consider a robot tasked with tidying a desk with a meticulously constructed Lego sports car. A human may recognize that it is not socially appropriate to disassemble the sports car and put it away as part of the "tidying". How can a robot reach that conclusion? Although large language models (LLMs) have recently been used to enable social reasoning, grounding this reasoning in the real world has been challenging. To reason in the real world, robots must go beyond passively querying LLMs and *actively gather information from the environment* that is required to make the right decision. For instance, after detecting that there is an occluded car, the robot may need to actively perceive the car to know whether it is an advanced model car made out of Legos or a toy car built by a toddler. We propose an approach that leverages an LLM and vision language model (VLM) to help a robot actively perceive its environment to perform grounded social reasoning. To evaluate our framework at scale, we release the MessySurfaces dataset which contains images of 70 real-world surfaces that need to be cleaned. We additionally illustrate our approach with a robot on 2 carefully designed surfaces. We find an average 12.9% improvement on the MessySurfaces benchmark and an average 15% improvement on the robot experiments over baselines that do not use active perception. The dataset, code, and videos of our approach can be found at https://minaek.github.io/groundedsocialreasoning.
Calibrated Language Models Must Hallucinate
Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.
Measuring Large Language Models Capacity to Annotate Journalistic Sourcing
Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.
Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
Variational Learning for Unsupervised Knowledge Grounded Dialogs
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document. These methods do not require the exact document to be known during training and rely on the use of a retrieval system to fetch relevant documents from a large index. The documents used to generate the responses are modeled as latent variables whose prior probabilities need to be estimated. Models such as RAG and REALM, marginalize the document probabilities over the documents retrieved from the index to define the log likelihood loss function which is optimized end-to-end. In this paper, we develop a variational approach to the above technique wherein, we instead maximize the Evidence Lower bound (ELBO). Using a collection of three publicly available open-conversation datasets, we demonstrate how the posterior distribution, that has information from the ground-truth response, allows for a better approximation of the objective function during training. To overcome the challenges associated with sampling over a large knowledge collection, we develop an efficient approach to approximate the ELBO. To the best of our knowledge we are the first to apply variational training for open-scale unsupervised knowledge grounded dialog systems.
Premise Order Matters in Reasoning with Large Language Models
Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.
Deep Outdated Fact Detection in Knowledge Graphs
Knowledge graphs (KGs) have garnered significant attention for their vast potential across diverse domains. However, the issue of outdated facts poses a challenge to KGs, affecting their overall quality as real-world information evolves. Existing solutions for outdated fact detection often rely on manual recognition. In response, this paper presents DEAN (Deep outdatEd fAct detectioN), a novel deep learning-based framework designed to identify outdated facts within KGs. DEAN distinguishes itself by capturing implicit structural information among facts through comprehensive modeling of both entities and relations. To effectively uncover latent out-of-date information, DEAN employs a contrastive approach based on a pre-defined Relations-to-Nodes (R2N) graph, weighted by the number of entities. Experimental results demonstrate the effectiveness and superiority of DEAN over state-of-the-art baseline methods.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
tagE: Enabling an Embodied Agent to Understand Human Instructions
Natural language serves as the primary mode of communication when an intelligent agent with a physical presence engages with human beings. While a plethora of research focuses on natural language understanding (NLU), encompassing endeavors such as sentiment analysis, intent prediction, question answering, and summarization, the scope of NLU directed at situations necessitating tangible actions by an embodied agent remains limited. The inherent ambiguity and incompleteness inherent in natural language present challenges for intelligent agents striving to decipher human intention. To tackle this predicament head-on, we introduce a novel system known as task and argument grounding for Embodied agents (tagE). At its core, our system employs an inventive neural network model designed to extract a series of tasks from complex task instructions expressed in natural language. Our proposed model adopts an encoder-decoder framework enriched with nested decoding to effectively extract tasks and their corresponding arguments from these intricate instructions. These extracted tasks are then mapped (or grounded) to the robot's established collection of skills, while the arguments find grounding in objects present within the environment. To facilitate the training and evaluation of our system, we have curated a dataset featuring complex instructions. The results of our experiments underscore the prowess of our approach, as it outperforms robust baseline models.
Computational analysis of US Congressional speeches reveals a shift from evidence to intuition
Pursuit of honest and truthful decision-making is crucial for governance and accountability in democracies. However, people sometimes take different perspectives of what it means to be honest and how to pursue truthfulness. Here we explore a continuum of perspectives from evidence-based reasoning, rooted in ascertainable facts and data, at one end, to intuitive decisions that are driven by feelings and subjective interpretations, at the other. We analyze the linguistic traces of those contrasting perspectives in Congressional speeches from 1879 to 2022. We find that evidence-based language has continued to decline since the mid-1970s, together with a decline in legislative productivity. The decline was accompanied by increasing partisan polarization in Congress and rising income inequality in society. Results highlight the importance of evidence-based language in political decision-making.
Truthful AI: Developing and governing AI that does not lie
In many contexts, lying -- the use of verbal falsehoods to deceive -- is harmful. While lying has traditionally been a human affair, AI systems that make sophisticated verbal statements are becoming increasingly prevalent. This raises the question of how we should limit the harm caused by AI "lies" (i.e. falsehoods that are actively selected for). Human truthfulness is governed by social norms and by laws (against defamation, perjury, and fraud). Differences between AI and humans present an opportunity to have more precise standards of truthfulness for AI, and to have these standards rise over time. This could provide significant benefits to public epistemics and the economy, and mitigate risks of worst-case AI futures. Establishing norms or laws of AI truthfulness will require significant work to: (1) identify clear truthfulness standards; (2) create institutions that can judge adherence to those standards; and (3) develop AI systems that are robustly truthful. Our initial proposals for these areas include: (1) a standard of avoiding "negligent falsehoods" (a generalisation of lies that is easier to assess); (2) institutions to evaluate AI systems before and after real-world deployment; and (3) explicitly training AI systems to be truthful via curated datasets and human interaction. A concerning possibility is that evaluation mechanisms for eventual truthfulness standards could be captured by political interests, leading to harmful censorship and propaganda. Avoiding this might take careful attention. And since the scale of AI speech acts might grow dramatically over the coming decades, early truthfulness standards might be particularly important because of the precedents they set.
Neural models for Factual Inconsistency Classification with Explanations
Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.
QASC: A Dataset for Question Answering via Sentence Composition
Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition(QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirable properties: (a) the facts to be composed are annotated in a large corpus, and (b) the decomposition into these facts is not evident from the question itself. The latter makes retrieval challenging as the system must introduce new concepts or relations in order to discover potential decompositions. Further, the reasoning model must then learn to identify valid compositions of these retrieved facts using common-sense reasoning. To help address these challenges, we provide annotation for supporting facts as well as their composition. Guided by these annotations, we present a two-step approach to mitigate the retrieval challenges. We use other multiple-choice datasets as additional training data to strengthen the reasoning model. Our proposed approach improves over current state-of-the-art language models by 11% (absolute). The reasoning and retrieval problems, however, remain unsolved as this model still lags by 20% behind human performance.
Generating Benchmarks for Factuality Evaluation of Language Models
Before deploying a language model (LM) within a given domain, it is important to measure its tendency to generate factually incorrect information in that domain. Existing factual generation evaluation methods focus on facts sampled from the LM itself, and thus do not control the set of evaluated facts and might under-represent rare and unlikely facts. We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality. FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM's propensity to generate true facts from the corpus vs. similar but incorrect statements. We use our framework to create two benchmarks: Wiki-FACTOR and News-FACTOR. We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score correlates with perplexity, but the two metrics do not always agree on model ranking; and (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation, as measured by human annotators. We make our data and code publicly available in https://github.com/AI21Labs/factor.
Understanding News Creation Intents: Frame, Dataset, and Method
As the disruptive changes in the media economy and the proliferation of alternative news media outlets, news intent has progressively deviated from ethical standards that serve the public interest. News intent refers to the purpose or intention behind the creation of a news article. While the significance of research on news intent has been widely acknowledged, the absence of a systematic news intent understanding framework hinders further exploration of news intent and its downstream applications. To bridge this gap, we propose News INTent (NINT) frame, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science. Within this frame, we define the news intent identification task and provide a benchmark dataset with fine-grained labels along with an efficient benchmark method. Experiments demonstrate that NINT is beneficial in both the intent identification task and downstream tasks that demand a profound understanding of news. This work marks a foundational step towards a more systematic exploration of news creation intents.
Does Localization Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language Models
Language models learn a great quantity of factual information during pretraining, and recent work localizes this information to specific model weights like mid-layer MLP weights. In this paper, we find that we can change how a fact is stored in a model by editing weights that are in a different location than where existing methods suggest that the fact is stored. This is surprising because we would expect that localizing facts to specific model parameters would tell us where to manipulate knowledge in models, and this assumption has motivated past work on model editing methods. Specifically, we show that localization conclusions from representation denoising (also known as Causal Tracing) do not provide any insight into which model MLP layer would be best to edit in order to override an existing stored fact with a new one. This finding raises questions about how past work relies on Causal Tracing to select which model layers to edit. Next, we consider several variants of the editing problem, including erasing and amplifying facts. For one of our editing problems, editing performance does relate to localization results from representation denoising, but we find that which layer we edit is a far better predictor of performance. Our results suggest, counterintuitively, that better mechanistic understanding of how pretrained language models work may not always translate to insights about how to best change their behavior. Our code is available at https://github.com/google/belief-localization
Can We Edit Factual Knowledge by In-Context Learning?
Previous studies have shown that large language models (LLMs) like GPTs store massive factual knowledge in their parameters. However, the stored knowledge could be false or out-dated. Traditional knowledge editing methods refine LLMs via fine-tuning on texts containing specific knowledge. However, with the increasing scales of LLMs, these gradient-based approaches bring large computation costs. The trend of model-as-a-service also makes it impossible to modify knowledge in black-box LMs. Inspired by in-context learning (ICL), a new paradigm based on demonstration contexts without parameter updating, we explore whether ICL can edit factual knowledge. To answer this question, we give a comprehensive empirical study of ICL strategies. Experiments show that in-context knowledge editing (IKE), without any gradient and parameter updating, achieves a competitive success rate compared to gradient-based methods on GPT-J (6B) but with much fewer side effects, including less over-editing on similar but unrelated facts and less knowledge forgetting on previously stored knowledge. We also apply the method to larger LMs with tens or hundreds of parameters like OPT-175B, which shows the scalability of our method. The code is available at https://github.com/Zce1112zslx/IKE.
SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.
Automatic answering of scientific questions using the FACTS-V1 framework: New methods in research to increase efficiency through the use of AI
The use of artificial intelligence (AI) offers various possibilities to expand and support educational research. Specifically, the implementation of AI can be used to develop new frameworks to establish new research tools that accelerate and meaningfully expand the efficiency of data evaluation and interpretation (Buckingham Shum et al., 2023). This article presents the prototype of the FACTS-V1 (Filtering and Analysis of Content in Textual Sources) framework. With the help of the application, numerous scientific papers can be automatically extracted, analyzed and interpreted from open access document servers without having to rely on proprietary applications and their limitations. The FACTS-V1 prototype consists of three building blocks. The first part deals with the extraction of texts, the second with filtering and interpretation, and the last with the actual statistical evaluation (topic modeling) using an interactive overview. The aim of the framework is to provide recommendations for future scientific questions based on existing data. The functionality is illustrated by asking how the use of AI will change the education sector. The data used to answer the question comes from 82 scientific papers on the topic of AI from 2024. The papers are publicly available on the peDOCS document server of the Leibniz Institute for Educational Research and Educational Information.
AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild
The prevalence and harms of online misinformation is a perennial concern for internet platforms, institutions and society at large. Over time, information shared online has become more media-heavy and misinformation has readily adapted to these new modalities. The rise of generative AI-based tools, which provide widely-accessible methods for synthesizing realistic audio, images, video and human-like text, have amplified these concerns. Despite intense interest on the part of the public and significant press coverage, quantitative information on the prevalence and modality of media-based misinformation remains scarce. Here, we present the results of a two-year study using human raters to annotate online media-based misinformation, mostly focusing on images, based on claims assessed in a large sample of publicly-accessible fact checks with the ClaimReview markup. We present an image typology, designed to capture aspects of the image and manipulation relevant to the image's role in the misinformation claim. We visualize the distribution of these types over time. We show the the rise of generative AI-based content in misinformation claims, and that it's commonality is a relatively recent phenomenon, occurring significantly after heavy press coverage. We also show "simple" methods dominated historically, particularly context manipulations, and continued to hold a majority as of the end of data collection in November 2023. The dataset, Annotated Misinformation, Media-Based (AMMeBa), is publicly-available, and we hope that these data will serve as both a means of evaluating mitigation methods in a realistic setting and as a first-of-its-kind census of the types and modalities of online misinformation.
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
Despite their impressive capabilities, large language models (LLMs) are prone to hallucinations, i.e., generating content that deviates from facts seen during pretraining. We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs that does not require conditioning on retrieved external knowledge nor additional fine-tuning. Our approach obtains the next-token distribution by contrasting the differences in logits obtained from projecting the later layers versus earlier layers to the vocabulary space, exploiting the fact that factual knowledge in an LLMs has generally been shown to be localized to particular transformer layers. We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts. DoLa consistently improves the truthfulness across multiple choices tasks and open-ended generation tasks, for example improving the performance of LLaMA family models on TruthfulQA by 12-17% absolute points, demonstrating its potential in making LLMs reliably generate truthful facts.
Difference-aware Knowledge Selection for Knowledge-grounded Conversation Generation
In a multi-turn knowledge-grounded dialog, the difference between the knowledge selected at different turns usually provides potential clues to knowledge selection, which has been largely neglected in previous research. In this paper, we propose a difference-aware knowledge selection method. It first computes the difference between the candidate knowledge sentences provided at the current turn and those chosen in the previous turns. Then, the differential information is fused with or disentangled from the contextual information to facilitate final knowledge selection. Automatic, human observational, and interactive evaluation shows that our method is able to select knowledge more accurately and generate more informative responses, significantly outperforming the state-of-the-art baselines. The codes are available at https://github.com/chujiezheng/DiffKS.
Evaluating Step-by-step Reasoning Traces: A Survey
Step-by-step reasoning is widely used to enhance the reasoning ability of large language models (LLMs) in complex problems. Evaluating the quality of reasoning traces is crucial for understanding and improving LLM reasoning. However, the evaluation criteria remain highly unstandardized, leading to fragmented efforts in developing metrics and meta-evaluation benchmarks. To address this gap, this survey provides a comprehensive overview of step-by-step reasoning evaluation, proposing a taxonomy of evaluation criteria with four top-level categories (groundedness, validity, coherence, and utility). We then categorize metrics based on their implementations, survey which metrics are used for assessing each criterion, and explore whether evaluator models can transfer across different criteria. Finally, we identify key directions for future research.
FactPICO: Factuality Evaluation for Plain Language Summarization of Medical Evidence
Plain language summarization with LLMs can be useful for improving textual accessibility of technical content. But how factual are these summaries in a high-stakes domain like medicine? This paper presents FactPICO, a factuality benchmark for plain language summarization of medical texts describing randomized controlled trials (RCTs), which are the basis of evidence-based medicine and can directly inform patient treatment. FactPICO consists of 345 plain language summaries of RCT abstracts generated from three LLMs (i.e., GPT-4, Llama-2, and Alpaca), with fine-grained evaluation and natural language rationales from experts. We assess the factuality of critical elements of RCTs in those summaries: Populations, Interventions, Comparators, Outcomes (PICO), as well as the reported findings concerning these. We also evaluate the correctness of the extra information (e.g., explanations) added by LLMs. Using FactPICO, we benchmark a range of existing factuality metrics, including the newly devised ones based on LLMs. We find that plain language summarization of medical evidence is still challenging, especially when balancing between simplicity and factuality, and that existing metrics correlate poorly with expert judgments on the instance level.
ECon: On the Detection and Resolution of Evidence Conflicts
The rise of large language models (LLMs) has significantly influenced the quality of information in decision-making systems, leading to the prevalence of AI-generated content and challenges in detecting misinformation and managing conflicting information, or "inter-evidence conflicts." This study introduces a method for generating diverse, validated evidence conflicts to simulate real-world misinformation scenarios. We evaluate conflict detection methods, including Natural Language Inference (NLI) models, factual consistency (FC) models, and LLMs, on these conflicts (RQ1) and analyze LLMs' conflict resolution behaviors (RQ2). Our key findings include: (1) NLI and LLM models exhibit high precision in detecting answer conflicts, though weaker models suffer from low recall; (2) FC models struggle with lexically similar answer conflicts, while NLI and LLM models handle these better; and (3) stronger models like GPT-4 show robust performance, especially with nuanced conflicts. For conflict resolution, LLMs often favor one piece of conflicting evidence without justification and rely on internal knowledge if they have prior beliefs.
Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-OASIS
After the introduction of Large Language Models (LLMs), there have been substantial improvements in the performance of Natural Language Generation (NLG) tasks, including Text Summarization and Machine Translation. However, LLMs still produce outputs containing hallucinations, that is, content not grounded in factual information. Therefore, developing methods to assess the factuality of LLMs has become urgent. Indeed, resources for factuality evaluation have recently emerged. Although challenging, these resources face one or more of the following limitations: (i) they are tailored to a specific task or domain; (ii) they are limited in size, thereby preventing the training of new factuality evaluators; (iii) they are designed for simpler verification tasks, such as claim verification. To address these issues, we introduce LLM-Oasis, to the best of our knowledge the largest resource for training end-to-end factuality evaluators. LLM-Oasis is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts. We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for benchmarking factuality evaluation systems. Our experiments demonstrate that LLM-Oasis presents a significant challenge for state-of-the-art LLMs, with GPT-4o achieving up to 60% accuracy in our proposed end-to-end factuality evaluation task, highlighting its potential to drive future research in the field.
Explainable Fact Checking with Probabilistic Answer Set Programming
One challenge in fact checking is the ability to improve the transparency of the decision. We present a fact checking method that uses reference information in knowledge graphs (KGs) to assess claims and explain its decisions. KGs contain a formal representation of knowledge with semantic descriptions of entities and their relationships. We exploit such rich semantics to produce interpretable explanations for the fact checking output. As information in a KG is inevitably incomplete, we rely on logical rule discovery and on Web text mining to gather the evidence to assess a given claim. Uncertain rules and facts are turned into logical programs and the checking task is modeled as an inference problem in a probabilistic extension of answer set programs. Experiments show that the probabilistic inference enables the efficient labeling of claims with interpretable explanations, and the quality of the results is higher than state of the art baselines.
Knowledge-Grounded Conversational Data Augmentation with Generative Conversational Networks
While rich, open-domain textual data are generally available and may include interesting phenomena (humor, sarcasm, empathy, etc.) most are designed for language processing tasks, and are usually in a non-conversational format. In this work, we take a step towards automatically generating conversational data using Generative Conversational Networks, aiming to benefit from the breadth of available language and knowledge data, and train open domain social conversational agents. We evaluate our approach on conversations with and without knowledge on the Topical Chat dataset using automatic metrics and human evaluators. Our results show that for conversations without knowledge grounding, GCN can generalize from the seed data, producing novel conversations that are less relevant but more engaging and for knowledge-grounded conversations, it can produce more knowledge-focused, fluent, and engaging conversations. Specifically, we show that for open-domain conversations with 10\% of seed data, our approach performs close to the baseline that uses 100% of the data, while for knowledge-grounded conversations, it achieves the same using only 1% of the data, on human ratings of engagingness, fluency, and relevance.
Are Fact-Checking Tools Reliable? An Evaluation of Google Fact Check
Fact-checking is an important way to combat misinformation on social media, especially during significant social events such as the COVID-19 pandemic and the U.S. presidential elections. In this study, we thoroughly evaluated the performance of Google Fact Check, a search engine specifically for fact-checking results, by analyzing the results returned from Google Fact Check regarding 1,000 false claims about COVID-19. We found that Google Fact Check could not provide sufficient fact-checking information for most false claims, even though the results provided are relatively reliable and helpful. We also found that claims getting different fact-checking verdicts tend to contain different emotional tones, and different sources tend to check claims using dictionary words to different extents and at different lengths. Claims in different descriptions are likely to get different fact-checking results. We aimed to bring up the best practice of fact-checking for the general people based on our analyses.
Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches
Generative artificial intelligence (AI) systems based on large-scale pretrained foundation models (PFMs) such as vision-language models, large language models (LLMs), diffusion models and vision-language-action (VLA) models have demonstrated the ability to solve complex and truly non-trivial AI problems in a wide variety of domains and contexts. Multimodal large language models (MLLMs), in particular, learn from vast and diverse data sources, allowing rich and nuanced representations of the world and, thereby, providing extensive capabilities, including the ability to reason, engage in meaningful dialog; collaborate with humans and other agents to jointly solve complex problems; and understand social and emotional aspects of humans. Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle. Consequently, generic LLMs are severely limited in their generalist capabilities. A number of foundational problems -- embodiment, symbol grounding, causality and memory -- are required to be addressed for LLMs to attain human-level general intelligence. These concepts are more aligned with human cognition and provide LLMs with inherent human-like cognitive properties that support the realization of physically-plausible, semantically meaningful, flexible and more generalizable knowledge and intelligence. In this work, we discuss the aforementioned foundational issues and survey state-of-the art approaches for implementing these concepts in LLMs. Specifically, we discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying
Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.
MindGames: Targeting Theory of Mind in Large Language Models with Dynamic Epistemic Modal Logic
Theory of Mind (ToM) is a critical component of intelligence, yet accurately measuring it continues to be a subject of debate. Prior research has attempted to apply human ToM assessments to natural language processing models using either human-created standardized tests or rule-based templates. However, these methods primarily focus on simplistic reasoning and require further validation. In this study, we utilize dynamic epistemic logic, which has established overlaps with ToM, to generate more intricate problems. We also introduce novel verbalization techniques to express these problems using natural language. Our findings indicate that certain language model scaling (from 70M to 6B and 350M to 174B) does not consistently yield results better than random chance. While GPT-4 demonstrates improved epistemic reasoning capabilities, there is still room for enhancement. Our code and datasets are publicly available https://github.com/antoinelrnld/modlog https://huggingface.co/datasets/sileod/mindgames
How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models
Given the growing influx of misinformation across news and social media, there is a critical need for systems that can provide effective real-time verification of news claims. Large language or multimodal model based verification has been proposed to scale up online policing mechanisms for mitigating spread of false and harmful content. While these can potentially reduce burden on human fact-checkers, such efforts may be hampered by foundation model training data becoming outdated. In this work, we test the limits of improving foundation model performance without continual updating through an initial study of knowledge transfer using either existing intra- and inter- domain benchmarks or explanations generated from large language models (LLMs). We evaluate on 12 public benchmarks for fact-checking and misinformation detection as well as two other tasks relevant to content moderation -- toxicity and stance detection. Our results on two recent multi-modal fact-checking benchmarks, Mocheg and Fakeddit, indicate that knowledge transfer strategies can improve Fakeddit performance over the state-of-the-art by up to 1.7% and Mocheg performance by up to 2.9%.
Polyglot or Not? Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models
In this work, we evaluate the capacity for foundation models to retrieve encyclopedic knowledge across a wide range of languages, topics, and contexts. To support this effort, we 1) produce a new dataset containing 303k factual associations in 20 different languages, 2) formulate a new counterfactual knowledge assessment, Polyglot or Not, and 3) benchmark 5 foundation models in a multilingual setting and a diverse set of 20 models in an English-only setting. We observed significant accuracy differences in models of interest, with Meta's LLaMA topping both the multilingual and English-only assessments. Error analysis reveals a significant deficiency in LLaMA's ability to retrieve facts in languages written in the Cyrillic script and gaps in its understanding of facts based on the location and gender of entailed subjects. Ultimately, we argue that the promise of utilizing foundation language models as bonafide polyglots is greatly diminished when they are tasked with retrieving information in languages other than English. Supporting code (https://github.com/daniel-furman/Polyglot-or-Not) and dataset (https://huggingface.co/datasets/Polyglot-or-Not/Fact-Completion) are openly released.
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ mathcal V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
Dynamics of (mis)information flow and engaging power of narratives
The debate around misinformation and its potentially detrimental effects on public opinion is complex and multifaceted, to the extent that even the relevant academic research has not found unanimity on the prevalence and consumption of misinformation compared with mainstream content. The methodological framework presented here emphasises the importance of considering data representative of the complexity of the phenomenon and metrics that control for possible scale effects. By combining statistical, econometric and machine learning models, we shed light on the real impact of misinformation about a subject of general interest and social relevance, such as vaccines, on both the information available to citizens and their news diet. Our results show the prominent role achieved by misinformation sources in the news ecosystem, but also - and above all - the inability of mainstream media to drive the public debate over time on issues that are particularly sensitive and emotional. Taking properly account for the temporal dynamics of public debate seems crucial to prevent the latter from moving into uncontrolled spaces where false narratives are more easily conveyed and entrenched.
Modifying Memories in Transformer Models
Large Transformer models have achieved impressive performance in many natural language tasks. In particular, Transformer based language models have been shown to have great capabilities in encoding factual knowledge in their vast amount of parameters. While the tasks of improving the memorization and generalization of Transformers have been widely studied, it is not well known how to make transformers forget specific old facts and memorize new ones. In this paper, we propose a new task of explicitly modifying specific factual knowledge in Transformer models while ensuring the model performance does not degrade on the unmodified facts. This task is useful in many scenarios, such as updating stale knowledge, protecting privacy, and eliminating unintended biases stored in the models. We benchmarked several approaches that provide natural baseline performances on this task. This leads to the discovery of key components of a Transformer model that are especially effective for knowledge modifications. The work also provides insights into the role that different training phases (such as pretraining and fine-tuning) play towards memorization and knowledge modification.
How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions
Large language models (LLMs) can "lie", which we define as outputting false statements despite "knowing" the truth in a demonstrable sense. LLMs might "lie", for example, when instructed to output misinformation. Here, we develop a simple lie detector that requires neither access to the LLM's activations (black-box) nor ground-truth knowledge of the fact in question. The detector works by asking a predefined set of unrelated follow-up questions after a suspected lie, and feeding the LLM's yes/no answers into a logistic regression classifier. Despite its simplicity, this lie detector is highly accurate and surprisingly general. When trained on examples from a single setting -- prompting GPT-3.5 to lie about factual questions -- the detector generalises out-of-distribution to (1) other LLM architectures, (2) LLMs fine-tuned to lie, (3) sycophantic lies, and (4) lies emerging in real-life scenarios such as sales. These results indicate that LLMs have distinctive lie-related behavioural patterns, consistent across architectures and contexts, which could enable general-purpose lie detection.
Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
The spread of misinformation is a prominent problem in today's society, and many researchers in academia and industry are trying to combat it. Due to the vast amount of misinformation that is created every day, it is unrealistic to leave this task to human fact-checkers. Data scientists and researchers have been working on automated misinformation detection for years, and it is still a challenging problem today. The goal of our research is to add a new level to automated misinformation detection; classifying segments of text with persuasive writing techniques in order to produce interpretable reasoning for why an article can be marked as misinformation. To accomplish this, we present a novel annotation scheme containing many common persuasive writing tactics, along with a dataset with human annotations accordingly. For this task, we make use of a RoBERTa model for text classification, due to its high performance in NLP. We develop several language model-based baselines and present the results of our persuasive strategy label predictions as well as the improvements these intermediate labels make in detecting misinformation and producing interpretable results.
Textual Entailment for Effective Triple Validation in Object Prediction
Knowledge base population seeks to expand knowledge graphs with facts that are typically extracted from a text corpus. Recently, language models pretrained on large corpora have been shown to contain factual knowledge that can be retrieved using cloze-style strategies. Such approach enables zero-shot recall of facts, showing competitive results in object prediction compared to supervised baselines. However, prompt-based fact retrieval can be brittle and heavily depend on the prompts and context used, which may produce results that are unintended or hallucinatory.We propose to use textual entailment to validate facts extracted from language models through cloze statements. Our results show that triple validation based on textual entailment improves language model predictions in different training regimes. Furthermore, we show that entailment-based triple validation is also effective to validate candidate facts extracted from other sources including existing knowledge graphs and text passages where named entities are recognized.
Draw Me a Flower: Processing and Grounding Abstraction in Natural Language
Abstraction is a core tenet of human cognition and communication. When composing natural language instructions, humans naturally evoke abstraction to convey complex procedures in an efficient and concise way. Yet, interpreting and grounding abstraction expressed in NL has not yet been systematically studied in NLP, with no accepted benchmarks specifically eliciting abstraction in NL. In this work, we set the foundation for a systematic study of processing and grounding abstraction in NLP. First, we deliver a novel abstraction elicitation method and present Hexagons, a 2D instruction-following game. Using Hexagons we collected over 4k naturally-occurring visually-grounded instructions rich with diverse types of abstractions. From these data, we derive an instruction-to-execution task and assess different types of neural models. Our results show that contemporary models and modeling practices are substantially inferior to human performance, and that models' performance is inversely correlated with the level of abstraction, showing less satisfying performance on higher levels of abstraction. These findings are consistent across models and setups, confirming that abstraction is a challenging phenomenon deserving further attention and study in NLP/AI research.
Multi-level Adaptive Contrastive Learning for Knowledge Internalization in Dialogue Generation
Knowledge-grounded dialogue generation aims to mitigate the issue of text degeneration by incorporating external knowledge to supplement the context. However, the model often fails to internalize this information into responses in a human-like manner. Instead, it simply inserts segments of the provided knowledge into generic responses. As a result, the generated responses tend to be tedious, incoherent, and in lack of interactivity which means the degeneration problem is still unsolved. In this work, we first find that such copying-style degeneration is primarily due to the weak likelihood objective, which allows the model to "cheat" the objective by merely duplicating knowledge segments in a superficial pattern matching based on overlap. To overcome this challenge, we then propose a Multi-level Adaptive Contrastive Learning (MACL) framework that dynamically samples negative examples and subsequently penalizes degeneration behaviors at both the token-level and sequence-level. Extensive experiments on the WoW dataset demonstrate the effectiveness of our approach across various pre-trained models.
Explain by Evidence: An Explainable Memory-based Neural Network for Question Answering
Interpretability and explainability of deep neural networks are challenging due to their scale, complexity, and the agreeable notions on which the explaining process rests. Previous work, in particular, has focused on representing internal components of neural networks through human-friendly visuals and concepts. On the other hand, in real life, when making a decision, human tends to rely on similar situations and/or associations in the past. Hence arguably, a promising approach to make the model transparent is to design it in a way such that the model explicitly connects the current sample with the seen ones, and bases its decision on these samples. Grounded on that principle, we propose in this paper an explainable, evidence-based memory network architecture, which learns to summarize the dataset and extract supporting evidences to make its decision. Our model achieves state-of-the-art performance on two popular question answering datasets (i.e. TrecQA and WikiQA). Via further analysis, we show that this model can reliably trace the errors it has made in the validation step to the training instances that might have caused these errors. We believe that this error-tracing capability provides significant benefit in improving dataset quality in many applications.
RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by Reversing Chain-of-Thought
Large language Models (LLMs) have achieved promising performance on arithmetic reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting. However, LLMs face challenges in maintaining factual consistency during reasoning, exhibiting tendencies to condition overlooking, question misinterpretation, and condition hallucination over given problems. Existing methods use coarse-grained feedback (e.g., whether the answer is correct) to improve factual consistency. In this work, we propose RCoT (Reversing Chain-of-Thought), a novel method to improve LLMs' reasoning abilities by automatically detecting and rectifying factual inconsistency in LLMs' generated solutions. To detect factual inconsistency, RCoT first asks LLMs to reconstruct the problem based on generated solutions. Then fine-grained comparisons between the original problem and the reconstructed problem expose the factual inconsistency in the original solutions. To rectify the solution, RCoT formulates detected factual inconsistency into fine-grained feedback to guide LLMs in revising solutions. Experimental results demonstrate consistent improvements of RCoT over standard CoT across seven arithmetic datasets. Moreover, we find that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities (e.g., ChatGPT reaches 94.6% accuracy on GSM8K), encouraging the community to further explore the fine-grained feedback generation methods.
FacTool: Factuality Detection in Generative AI -- A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios
The emergence of generative pre-trained models has facilitated the synthesis of high-quality text, but it has also posed challenges in identifying factual errors in the generated text. In particular: (1) A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models. (2) Generated texts tend to be lengthy and lack a clearly defined granularity for individual facts. (3) There is a scarcity of explicit evidence available during the process of fact checking. With the above challenges in mind, in this paper, we propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models (e.g., ChatGPT). Experiments on four different tasks (knowledge-based QA, code generation, mathematical reasoning, and scientific literature review) show the efficacy of the proposed method. We release the code of FacTool associated with ChatGPT plugin interface at https://github.com/GAIR-NLP/factool .
ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs
In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced.
AdaCAD: Adaptively Decoding to Balance Conflicts between Contextual and Parametric Knowledge
Knowledge conflict arises from discrepancies between information in the context of a large language model (LLM) and the knowledge stored in its parameters. This can hurt performance when using standard decoding techniques, which tend to ignore the context. Existing test-time contrastive methods seek to address this by comparing the LLM's output distribution with and without the context and adjust the model according to the contrast between them. However, we find that these methods frequently misjudge the degree of conflict and struggle to handle instances that vary in their amount of conflict, with static methods over-adjusting when conflict is absent. We propose a fine-grained, instance-level approach called AdaCAD, which dynamically infers the weight of adjustment based on the degree of conflict, as measured by the Jensen-Shannon divergence between distributions representing contextual and parametric knowledge. Our experiments across four models on six diverse question-answering (QA) datasets and three summarization tasks demonstrate that our training-free adaptive method consistently outperforms other decoding methods on QA, with average accuracy gains of 14.21% (absolute) over a static contrastive baseline, and improves the factuality of summaries by 5.59 (AlignScore). Furthermore, our analysis shows that while decoding with contrastive baselines hurts performance when conflict is absent, AdaCAD mitigates these losses, making it more applicable to real-world datasets in which some examples have conflict and others do not.
SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference
Given a partial description like "she opened the hood of the car," humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.
Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs
Environment, Social, and Governance (ESG) KPIs assess an organization's performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports.
WikiFactDiff: A Large, Realistic, and Temporally Adaptable Dataset for Atomic Factual Knowledge Update in Causal Language Models
The factuality of large language model (LLMs) tends to decay over time since events posterior to their training are "unknown" to them. One way to keep models up-to-date could be factual update: the task of inserting, replacing, or removing certain simple (atomic) facts within the model. To study this task, we present WikiFactDiff, a dataset that describes the evolution of factual knowledge between two dates as a collection of simple facts divided into three categories: new, obsolete, and static. We describe several update scenarios arising from various combinations of these three types of basic update. The facts are represented by subject-relation-object triples; indeed, WikiFactDiff was constructed by comparing the state of the Wikidata knowledge base at 4 January 2021 and 27 February 2023. Those fact are accompanied by verbalization templates and cloze tests that enable running update algorithms and their evaluation metrics. Contrary to other datasets, such as zsRE and CounterFact, WikiFactDiff constitutes a realistic update setting that involves various update scenarios, including replacements, archival, and new entity insertions. We also present an evaluation of existing update algorithms on WikiFactDiff.
An Analysis of Multilingual FActScore
FActScore has gained popularity as a metric to estimate the factuality of long-form texts generated by Large Language Models (LLMs) in English. However, there has not been any work in studying the behavior of FActScore in other languages. This paper studies the limitations of each component in the four-component pipeline of FActScore in the multilingual setting. We introduce a new dataset for FActScore on texts generated by strong multilingual LLMs. Our evaluation shows that LLMs exhibit distinct behaviors in both fact extraction and fact scoring tasks. No LLM produces consistent and reliable FActScore across languages with varying levels of resources. We also find that the knowledge source plays an important role in the quality of the estimated FActScore. Using Wikipedia as the knowledge source may hinder the true FActScore of long-form text due to its limited coverage in medium- and low-resource languages. We also incorporate three mitigations to our knowledge source that ultimately improve FActScore estimation across all languages.
The Troubling Emergence of Hallucination in Large Language Models -- An Extensive Definition, Quantification, and Prescriptive Remediations
The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (HILT), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations.
FactCHD: Benchmarking Fact-Conflicting Hallucination Detection
Despite their impressive generative capabilities, LLMs are hindered by fact-conflicting hallucinations in real-world applications. The accurate identification of hallucinations in texts generated by LLMs, especially in complex inferential scenarios, is a relatively unexplored area. To address this gap, we present FactCHD, a dedicated benchmark designed for the detection of fact-conflicting hallucinations from LLMs. FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation. A distinctive element of FactCHD is its integration of fact-based evidence chains, significantly enhancing the depth of evaluating the detectors' explanations. Experiments on different LLMs expose the shortcomings of current approaches in detecting factual errors accurately. Furthermore, we introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2, aiming to yield more credible detection through the amalgamation of predictive results and evidence. The benchmark dataset is available at https://github.com/zjunlp/FactCHD.
HealthFC: A Dataset of Health Claims for Evidence-Based Medical Fact-Checking
Seeking health-related advice on the internet has become a common practice in the digital era. Determining the trustworthiness of medical claims found online and finding appropriate evidence for this information is increasingly challenging. Fact-checking has emerged as an approach to assess the veracity of factual claims using evidence from credible knowledge sources. To help advance the automation of this task, in this paper, we introduce a novel dataset of 750 health-related claims, labeled for veracity by medical experts and backed with evidence from appropriate clinical studies. We provide an analysis of the dataset, highlighting its characteristics and challenges. The dataset can be used for Machine Learning tasks related to automated fact-checking such as evidence retrieval, veracity prediction, and explanation generation. For this purpose, we provide baseline models based on different approaches, examine their performance, and discuss the findings.
PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation
Hallucinated outputs from language models pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing factuality evaluation methods, such as entailment- and question-answering-based (QA), struggle with plain language summary (PLS) generation due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the source document to enhance comprehension. To address this, we introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact, to evaluate the factuality of both source-simplified and elaboratively explained sentences. PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method. Our approach is lightweight and computationally efficient. Empirical results show that existing factuality metrics fail to effectively evaluate factuality in PLS, especially for elaborative explanations, whereas PlainQAFact achieves state-of-the-art performance. We further analyze its effectiveness across external knowledge sources, answer extraction strategies, overlap measures, and document granularity levels, refining its overall factuality assessment.
OG-RAG: Ontology-Grounded Retrieval-Augmented Generation For Large Language Models
This paper presents OG-RAG, an Ontology-Grounded Retrieval Augmented Generation method designed to enhance LLM-generated responses by anchoring retrieval processes in domain-specific ontologies. While LLMs are widely used for tasks like question answering and search, they struggle to adapt to specialized knowledge, such as industrial workflows or knowledge work, without expensive fine-tuning or sub-optimal retrieval methods. Existing retrieval-augmented models, such as RAG, offer improvements but fail to account for structured domain knowledge, leading to suboptimal context generation. Ontologies, which conceptually organize domain knowledge by defining entities and their interrelationships, offer a structured representation to address this gap. OG-RAG constructs a hypergraph representation of domain documents, where each hyperedge encapsulates clusters of factual knowledge grounded using domain-specific ontology. An optimization algorithm then retrieves the minimal set of hyperedges that constructs a precise, conceptually grounded context for the LLM. This method enables efficient retrieval while preserving the complex relationships between entities. OG-RAG applies to domains where fact-based reasoning is essential, particularly in tasks that require workflows or decision-making steps to follow predefined rules and procedures. These include industrial workflows in healthcare, legal, and agricultural sectors, as well as knowledge-driven tasks such as news journalism, investigative research, consulting and more. Our evaluations demonstrate that OG-RAG increases the recall of accurate facts by 55% and improves response correctness by 40% across four different LLMs. Additionally, OG-RAG enables 30% faster attribution of responses to context and boosts fact-based reasoning accuracy by 27% compared to baseline methods.
Is This the Subspace You Are Looking for? An Interpretability Illusion for Subspace Activation Patching
Mechanistic interpretability aims to understand model behaviors in terms of specific, interpretable features, often hypothesized to manifest as low-dimensional subspaces of activations. Specifically, recent studies have explored subspace interventions (such as activation patching) as a way to simultaneously manipulate model behavior and attribute the features behind it to given subspaces. In this work, we demonstrate that these two aims diverge, potentially leading to an illusory sense of interpretability. Counterintuitively, even if a subspace intervention makes the model's output behave as if the value of a feature was changed, this effect may be achieved by activating a dormant parallel pathway leveraging another subspace that is causally disconnected from model outputs. We demonstrate this phenomenon in a distilled mathematical example, in two real-world domains (the indirect object identification task and factual recall), and present evidence for its prevalence in practice. In the context of factual recall, we further show a link to rank-1 fact editing, providing a mechanistic explanation for previous work observing an inconsistency between fact editing performance and fact localization. However, this does not imply that activation patching of subspaces is intrinsically unfit for interpretability. To contextualize our findings, we also show what a success case looks like in a task (indirect object identification) where prior manual circuit analysis informs an understanding of the location of a feature. We explore the additional evidence needed to argue that a patched subspace is faithful.
UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models
Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.
DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8\% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
VQA Therapy: Exploring Answer Differences by Visually Grounding Answers
Visual question answering is a task of predicting the answer to a question about an image. Given that different people can provide different answers to a visual question, we aim to better understand why with answer groundings. We introduce the first dataset that visually grounds each unique answer to each visual question, which we call VQAAnswerTherapy. We then propose two novel problems of predicting whether a visual question has a single answer grounding and localizing all answer groundings. We benchmark modern algorithms for these novel problems to show where they succeed and struggle. The dataset and evaluation server can be found publicly at https://vizwiz.org/tasks-and-datasets/vqa-answer-therapy/.
Banishing LLM Hallucinations Requires Rethinking Generalization
Despite their powerful chat, coding, and reasoning abilities, Large Language Models (LLMs) frequently hallucinate. Conventional wisdom suggests that hallucinations are a consequence of a balance between creativity and factuality, which can be mitigated, but not eliminated, by grounding the LLM in external knowledge sources. Through extensive systematic experiments, we show that these traditional approaches fail to explain why LLMs hallucinate in practice. Specifically, we show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers. We corroborate these experimental findings with a theoretical construction showing that simple neural networks trained to predict the next token hallucinate when the training loss is above a threshold as it usually does in practice when training on internet scale data. We interpret our findings by comparing against traditional retrieval methods for mitigating hallucinations. We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts that are retrieved dynamically.
FELM: Benchmarking Factuality Evaluation of Large Language Models
Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g.~information from Wikipedia), felm focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on felm, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
Distinguishing Ignorance from Error in LLM Hallucinations
Large language models (LLMs) are susceptible to hallucinations-outputs that are ungrounded, factually incorrect, or inconsistent with prior generations. We focus on close-book Question Answering (CBQA), where previous work has not fully addressed the distinction between two possible kinds of hallucinations, namely, whether the model (1) does not hold the correct answer in its parameters or (2) answers incorrectly despite having the required knowledge. We argue that distinguishing these cases is crucial for detecting and mitigating hallucinations. Specifically, case (2) may be mitigated by intervening in the model's internal computation, as the knowledge resides within the model's parameters. In contrast, in case (1) there is no parametric knowledge to leverage for mitigation, so it should be addressed by resorting to an external knowledge source or abstaining. To help distinguish between the two cases, we introduce Wrong Answer despite having Correct Knowledge (WACK), an approach for constructing model-specific datasets for the second hallucination type. Our probing experiments indicate that the two kinds of hallucinations are represented differently in the model's inner states. Next, we show that datasets constructed using WACK exhibit variations across models, demonstrating that even when models share knowledge of certain facts, they still vary in the specific examples that lead to hallucinations. Finally, we show that training a probe on our WACK datasets leads to better hallucination detection of case (2) hallucinations than using the common generic one-size-fits-all datasets. The code is available at https://github.com/technion-cs-nlp/hallucination-mitigation .
Deduction under Perturbed Evidence: Probing Student Simulation Capabilities of Large Language Models
We explore whether Large Language Models (LLMs) are capable of logical reasoning with distorted facts, which we call Deduction under Perturbed Evidence (DUPE). DUPE presents a unique challenge to LLMs since they typically rely on their parameters, which encode mostly accurate information, to reason and make inferences. However, in DUPE, LLMs must reason over manipulated or falsified evidence present in their prompts, which can result in false conclusions that are valid only under the manipulated evidence. Our goal with DUPE is to determine whether LLMs can arrive at these false conclusions and identify whether the dominant factor influencing the deduction process is the encoded data in the parameters or the manipulated evidence in the prompts. To evaluate the DUPE capabilities of LLMs, we create a DUPEd version of the StrategyQA dataset, where facts are manipulated to reverse the answer to the question. Our findings show that even the most advanced GPT models struggle to reason on manipulated facts - showcasing poor DUPE skills - with accuracy dropping by 45% compared to the original dataset. We also investigate prompt settings inspired from student simulation models, which mitigate the accuracy drop to some extent. Our findings have practical implications for understanding the performance of LLMs in real-world applications such as student simulation models that involve reasoning over inaccurate information.
Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language
This article presents a pipeline for automated fact-checking leveraging publicly available Language Models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules -- the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the Question Answering for Claim Generation (QACG) method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results.We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise V-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
How Do Large Language Models Acquire Factual Knowledge During Pretraining?
Despite the recent observation that large language models (LLMs) can store substantial factual knowledge, there is a limited understanding of the mechanisms of how they acquire factual knowledge through pretraining. This work addresses this gap by studying how LLMs acquire factual knowledge during pretraining. The findings reveal several important insights into the dynamics of factual knowledge acquisition during pretraining. First, counterintuitively, we observe that pretraining on more data shows no significant improvement in the model's capability to acquire and maintain factual knowledge. Next, there is a power-law relationship between training steps and forgetting of memorization and generalization of factual knowledge, and LLMs trained with duplicated training data exhibit faster forgetting. Third, training LLMs with larger batch sizes can enhance the models' robustness to forgetting. Overall, our observations suggest that factual knowledge acquisition in LLM pretraining occurs by progressively increasing the probability of factual knowledge presented in the pretraining data at each step. However, this increase is diluted by subsequent forgetting. Based on this interpretation, we demonstrate that we can provide plausible explanations for recently observed behaviors of LLMs, such as the poor performance of LLMs on long-tail knowledge and the benefits of deduplicating the pretraining corpus.
Scalable and Domain-General Abstractive Proposition Segmentation
Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.
2nd Place Solution to the GQA Challenge 2019
We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and use them as accurate knowledge for answering further questions of the same image. We are fully aware that this setting is not ubiquitously applicable, and in a more common setting one should assume the questions are asked separately and they cannot be gathered to obtain a knowledge base. Nonetheless, we use this method as an evidence to demonstrate our observation that the bottleneck effect is more severe on the feature extraction part than it is on the knowledge reasoning part. We show significant gaps when using the same reasoning model with 1) ground-truth features; 2) statistical features; 3) detected features from completely learned detectors, and analyze what these gaps mean to researches on visual reasoning topics. Our model with the statistical features achieves the 2nd place in the GQA Challenge 2019.
HeadlineCause: A Dataset of News Headlines for Detecting Causalities
Detecting implicit causal relations in texts is a task that requires both common sense and world knowledge. Existing datasets are focused either on commonsense causal reasoning or explicit causal relations. In this work, we present HeadlineCause, a dataset for detecting implicit causal relations between pairs of news headlines. The dataset includes over 5000 headline pairs from English news and over 9000 headline pairs from Russian news labeled through crowdsourcing. The pairs vary from totally unrelated or belonging to the same general topic to the ones including causation and refutation relations. We also present a set of models and experiments that demonstrates the dataset validity, including a multilingual XLM-RoBERTa based model for causality detection and a GPT-2 based model for possible effects prediction.
LM vs LM: Detecting Factual Errors via Cross Examination
A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.
Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking
When writing and talking, people sometimes pause to think. Although reasoning-focused works have often framed reasoning as a method of answering questions or completing agentic tasks, reasoning is implicit in almost all written text. For example, this applies to the steps not stated between the lines of a proof or to the theory of mind underlying a conversation. In the Self-Taught Reasoner (STaR, Zelikman et al. 2022), useful thinking is learned by inferring rationales from few-shot examples in question-answering and learning from those that lead to a correct answer. This is a highly constrained setting -- ideally, a language model could instead learn to infer unstated rationales in arbitrary text. We present Quiet-STaR, a generalization of STaR in which LMs learn to generate rationales at each token to explain future text, improving their predictions. We address key challenges, including 1) the computational cost of generating continuations, 2) the fact that the LM does not initially know how to generate or use internal thoughts, and 3) the need to predict beyond individual next tokens. To resolve these, we propose a tokenwise parallel sampling algorithm, using learnable tokens indicating a thought's start and end, and an extended teacher-forcing technique. Encouragingly, generated rationales disproportionately help model difficult-to-predict tokens and improve the LM's ability to directly answer difficult questions. In particular, after continued pretraining of an LM on a corpus of internet text with Quiet-STaR, we find zero-shot improvements on GSM8K (5.9%rightarrow10.9%) and CommonsenseQA (36.3%rightarrow47.2%) and observe a perplexity improvement of difficult tokens in natural text. Crucially, these improvements require no fine-tuning on these tasks. Quiet-STaR marks a step towards LMs that can learn to reason in a more general and scalable way.
Logical Fallacy Detection
Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% on Logic and 4.51% on LogicClimate. We encourage future work to explore this task as (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy
Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness.
CREPE: Open-Domain Question Answering with False Presuppositions
Information seeking users often pose questions with false presuppositions, especially when asking about unfamiliar topics. Most existing question answering (QA) datasets, in contrast, assume all questions have well defined answers. We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums. We find that 25% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections. Through extensive baseline experiments, we show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct. This is in large part due to difficulty in retrieving relevant evidence passages from a large text corpus. CREPE provides a benchmark to study question answering in the wild, and our analyses provide avenues for future work in better modeling and further studying the task.
Towards a Benchmark of Natural Language Arguments
The connections among natural language processing and argumentation theory are becoming stronger in the latest years, with a growing amount of works going in this direction, in different scenarios and applying heterogeneous techniques. In this paper, we present two datasets we built to cope with the combination of the Textual Entailment framework and bipolar abstract argumentation. In our approach, such datasets are used to automatically identify through a Textual Entailment system the relations among the arguments (i.e., attack, support), and then the resulting bipolar argumentation graphs are analyzed to compute the accepted arguments.
Expository Text Generation: Imitate, Retrieve, Paraphrase
Expository documents are vital resources for conveying complex information to readers. Despite their usefulness, writing expository text by hand is a challenging process that requires careful content planning, obtaining facts from multiple sources, and the ability to clearly synthesize these facts. To ease these burdens, we propose the task of expository text generation, which seeks to automatically generate an accurate and stylistically consistent expository text for a topic by intelligently searching a knowledge source. We solve our task by developing IRP, a framework that overcomes the limitations of retrieval-augmented models and iteratively performs content planning, fact retrieval, and rephrasing. Through experiments on three diverse, newly-collected datasets, we show that IRP produces factual and organized expository texts that accurately inform readers.
EgoTV: Egocentric Task Verification from Natural Language Task Descriptions
To enable progress towards egocentric agents capable of understanding everyday tasks specified in natural language, we propose a benchmark and a synthetic dataset called Egocentric Task Verification (EgoTV). EgoTV contains multi-step tasks with multiple sub-task decompositions, state changes, object interactions, and sub-task ordering constraints, in addition to abstracted task descriptions that contain only partial details about ways to accomplish a task. We also propose a novel Neuro-Symbolic Grounding (NSG) approach to enable the causal, temporal, and compositional reasoning of such tasks. We demonstrate NSG's capability towards task tracking and verification on our EgoTV dataset and a real-world dataset derived from CrossTask (CTV). Our contributions include the release of the EgoTV and CTV datasets, and the NSG model for future research on egocentric assistive agents.
COPEN: Probing Conceptual Knowledge in Pre-trained Language Models
Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.
Locating and Editing Factual Associations in Mamba
We investigate the mechanisms of factual recall in the Mamba state space model. Our work is inspired by previous findings in autoregressive transformer language models suggesting that their knowledge recall is localized to particular modules at specific token locations; we therefore ask whether factual recall in Mamba can be similarly localized. To investigate this, we conduct four lines of experiments on Mamba. First, we apply causal tracing or interchange interventions to localize key components inside Mamba that are responsible for recalling facts, revealing that specific components within middle layers show strong causal effects at the last token of the subject, while the causal effect of intervening on later layers is most pronounced at the last token of the prompt, matching previous findings on autoregressive transformers. Second, we show that rank-one model editing methods can successfully insert facts at specific locations, again resembling findings on transformer models. Third, we examine the linearity of Mamba's representations of factual relations. Finally we adapt attention-knockout techniques to Mamba to dissect information flow during factual recall. We compare Mamba directly to a similar-sized transformer and conclude that despite significant differences in architectural approach, when it comes to factual recall, the two architectures share many similarities.
Fine-tuning Language Models for Factuality
The fluency and creativity of large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines. Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations.' These errors can inadvertently spread misinformation or harmfully perpetuate misconceptions. Further, manual fact-checking of model responses is a time-consuming process, making human factuality labels expensive to acquire. In this work, we fine-tune language models to be more factual, without human labeling and targeting more open-ended generation settings than past work. We leverage two key recent innovations in NLP to do so. First, several recent works have proposed methods for judging the factuality of open-ended text by measuring consistency with an external knowledge base or simply a large model's confidence scores. Second, the direct preference optimization algorithm enables straightforward fine-tuning of language models on objectives other than supervised imitation, using a preference ranking over possible model responses. We show that learning from automatically generated factuality preference rankings, generated either through existing retrieval systems or our novel retrieval-free approach, significantly improves the factuality (percent of generated claims that are correct) of Llama-2 on held-out topics compared with RLHF or decoding strategies targeted at factuality. At 7B scale, compared to Llama-2-chat, we observe 58% and 40% reduction in factual error rate when generating biographies and answering medical questions, respectively.
FACT or Fiction: Can Truthful Mechanisms Eliminate Federated Free Riding?
Standard federated learning (FL) approaches are vulnerable to the free-rider dilemma: participating agents can contribute little to nothing yet receive a well-trained aggregated model. While prior mechanisms attempt to solve the free-rider dilemma, none have addressed the issue of truthfulness. In practice, adversarial agents can provide false information to the server in order to cheat its way out of contributing to federated training. In an effort to make free-riding-averse federated mechanisms truthful, and consequently less prone to breaking down in practice, we propose FACT. FACT is the first federated mechanism that: (1) eliminates federated free riding by using a penalty system, (2) ensures agents provide truthful information by creating a competitive environment, and (3) encourages agent participation by offering better performance than training alone. Empirically, FACT avoids free-riding when agents are untruthful, and reduces agent loss by over 4x.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
ClarifyDelphi: Reinforced Clarification Questions with Defeasibility Rewards for Social and Moral Situations
Context is everything, even in commonsense moral reasoning. Changing contexts can flip the moral judgment of an action; "Lying to a friend" is wrong in general, but may be morally acceptable if it is intended to protect their life. We present ClarifyDelphi, an interactive system that learns to ask clarification questions (e.g., why did you lie to your friend?) in order to elicit additional salient contexts of a social or moral situation. We posit that questions whose potential answers lead to diverging moral judgments are the most informative. Thus, we propose a reinforcement learning framework with a defeasibility reward that aims to maximize the divergence between moral judgments of hypothetical answers to a question. Human evaluation demonstrates that our system generates more relevant, informative and defeasible questions compared to competitive baselines. Our work is ultimately inspired by studies in cognitive science that have investigated the flexibility in moral cognition (i.e., the diverse contexts in which moral rules can be bent), and we hope that research in this direction can assist both cognitive and computational investigations of moral judgments.
GLUCOSE: GeneraLized and COntextualized Story Explanations
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE's rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans' mental models.
Varifocal Question Generation for Fact-checking
Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present {\it Varifocal}, a method that generates questions based on different focal points within a given claim, i.e.\ different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.
Zero-shot Factual Consistency Evaluation Across Domains
This work addresses the challenge of factual consistency in text generation systems. We unify the tasks of Natural Language Inference, Summarization Evaluation, Factuality Verification and Factual Consistency Evaluation to train models capable of evaluating the factual consistency of source-target pairs across diverse domains. We rigorously evaluate these against eight baselines on a comprehensive benchmark suite comprising 22 datasets that span various tasks, domains, and document lengths. Results demonstrate that our method achieves state-of-the-art performance on this heterogeneous benchmark while addressing efficiency concerns and attaining cross-domain generalization.
Are LLMs classical or nonmonotonic reasoners? Lessons from generics
Recent scholarship on reasoning in LLMs has supplied evidence of impressive performance and flexible adaptation to machine generated or human feedback. Nonmonotonic reasoning, crucial to human cognition for navigating the real world, remains a challenging, yet understudied task. In this work, we study nonmonotonic reasoning capabilities of seven state-of-the-art LLMs in one abstract and one commonsense reasoning task featuring generics, such as 'Birds fly', and exceptions, 'Penguins don't fly' (see Fig. 1). While LLMs exhibit reasoning patterns in accordance with human nonmonotonic reasoning abilities, they fail to maintain stable beliefs on truth conditions of generics at the addition of supporting examples ('Owls fly') or unrelated information ('Lions have manes'). Our findings highlight pitfalls in attributing human reasoning behaviours to LLMs, as well as assessing general capabilities, while consistent reasoning remains elusive.
Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models
The capabilities and limitations of Large Language Models have been sketched out in great detail in recent years, providing an intriguing yet conflicting picture. On the one hand, LLMs demonstrate a general ability to solve problems. On the other hand, they show surprising reasoning gaps when compared to humans, casting doubt on the robustness of their generalisation strategies. The sheer volume of data used in the design of LLMs has precluded us from applying the method traditionally used to measure generalisation: train-test set separation. To overcome this, we study what kind of generalisation strategies LLMs employ when performing reasoning tasks by investigating the pretraining data they rely on. For two models of different sizes (7B and 35B) and 2.5B of their pretraining tokens, we identify what documents influence the model outputs for three simple mathematical reasoning tasks and contrast this to the data that are influential for answering factual questions. We find that, while the models rely on mostly distinct sets of data for each factual question, a document often has a similar influence across different reasoning questions within the same task, indicating the presence of procedural knowledge. We further find that the answers to factual questions often show up in the most influential data. However, for reasoning questions the answers usually do not show up as highly influential, nor do the answers to the intermediate reasoning steps. When we characterise the top ranked documents for the reasoning questions qualitatively, we confirm that the influential documents often contain procedural knowledge, like demonstrating how to obtain a solution using formulae or code. Our findings indicate that the approach to reasoning the models use is unlike retrieval, and more like a generalisable strategy that synthesises procedural knowledge from documents doing a similar form of reasoning.
FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation
Language models (LMs) are widely used by an increasing number of users, underscoring the challenge of maintaining factuality across a broad range of topics. We first present VERIFY (Verification and Evidence RetrIeval for FactualitY evaluation), a pipeline to evaluate LMs' factuality in real-world user interactions. VERIFY considers the verifiability of LM-generated content and categorizes content units as supported, unsupported, or undecidable based on the retrieved evidence from the Web. Importantly, factuality judgment by VERIFY correlates better with human evaluations than existing methods. Using VERIFY, we identify "hallucination prompts" across diverse topics, i.e., those eliciting the highest rates of incorrect and inconclusive LM responses. These prompts form FactBench, a dataset of 1K prompts across 150 fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and can be regularly updated with new prompts. We benchmark widely-used LMs from GPT, Gemini, and Llama3.1 family on FactBench, yielding the following key findings: (i) Proprietary models exhibit better factuality, with performance declining from Easy to Hard hallucination prompts. (ii) Llama3.1-405B-Instruct shows comparable or lower factual accuracy than Llama3.1-70B-Instruct across all evaluation methods due to its higher subjectivity that leads to more content labeled as undecidable. (iii) Gemini1.5-Pro shows a significantly higher refusal rate, with over-refusal in 25% of cases. Our code and data are publicly available at https://huggingface.co/spaces/launch/factbench.
The Role of the Crowd in Countering Misinformation: A Case Study of the COVID-19 Infodemic
Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.
Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion
Language models (LMs) can make a correct prediction based on many possible signals in a prompt, not all corresponding to recall of factual associations. However, current interpretations of LMs fail to take this into account. For example, given the query "Astrid Lindgren was born in" with the corresponding completion "Sweden", no difference is made between whether the prediction was based on knowing where the author was born or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we present a model-specific recipe - PrISM - for constructing datasets with examples of four different prediction scenarios: generic language modeling, guesswork, heuristics recall and exact fact recall. We apply two popular interpretability methods to the scenarios: causal tracing (CT) and information flow analysis. We find that both yield distinct results for each scenario. Results for exact fact recall and generic language modeling scenarios confirm previous conclusions about the importance of mid-range MLP sublayers for fact recall, while results for guesswork and heuristics indicate a critical role of late last token position MLP sublayers. In summary, we contribute resources for a more extensive and granular study of fact completion in LMs, together with analyses that provide a more nuanced understanding of how LMs process fact-related queries.
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions
The information stored in large language models (LLMs) falls out of date quickly, and retraining from scratch is often not an option. This has recently given rise to a range of techniques for injecting new facts through updating model weights. Current evaluation paradigms are extremely limited, mainly validating the recall of edited facts, but changing one fact should cause rippling changes to the model's related beliefs. If we edit the UK Prime Minister to now be Rishi Sunak, then we should get a different answer to Who is married to the British Prime Minister? In this work, we present a benchmark, MQuAKE (Multi-hop Question Answering for Knowledge Editing), comprising multi-hop questions that assess whether edited models correctly answer questions where the answer should change as an entailed consequence of edited facts. While we find that current knowledge-editing approaches can recall edited facts accurately, they fail catastrophically on the constructed multi-hop questions. We thus propose a simple memory-based approach, MeLLo, which stores all edited facts externally while prompting the language model iteratively to generate answers that are consistent with the edited facts. While MQuAKE remains challenging, we show that MeLLo scales well with LLMs (up to 175B) and outperforms previous model editors by a large margin.
FACTOID: FACtual enTailment fOr hallucInation Detection
The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.
SH2: Self-Highlighted Hesitation Helps You Decode More Truthfully
Large language models (LLMs) demonstrate great performance in text generation. However, LLMs are still suffering from hallucinations. In this work, we propose an inference-time method, Self-Highlighted Hesitation (SH2), to help LLMs decode more truthfully. SH2 is based on a simple fact rooted in information theory that for an LLM, the tokens predicted with lower probabilities are prone to be more informative than others. Our analysis shows that the tokens assigned with lower probabilities by an LLM are more likely to be closely related to factual information, such as nouns, proper nouns, and adjectives. Therefore, we propose to ''highlight'' the factual information by selecting the tokens with the lowest probabilities and concatenating them to the original context, thus forcing the model to repeatedly read and hesitate on these tokens before generation. During decoding, we also adopt contrastive decoding to emphasize the difference in the output probabilities brought by the hesitation. Experimental results demonstrate that our SH2, requiring no additional data or models, can effectively help LLMs elicit factual knowledge and distinguish hallucinated contexts. Significant and consistent improvements are achieved by SH2 for LLaMA-7b and LLaMA2-7b on multiple hallucination tasks.
NELA-GT-2019: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present an updated version of the NELA-GT-2018 dataset (N{\o}rregaard, Horne, and Adal{\i} 2019), entitled NELA-GT-2019. NELA-GT-2019 contains 1.12M news articles from 260 sources collected between January 1st 2019 and December 31st 2019. Just as with NELA-GT-2018, these sources come from a wide range of mainstream news sources and alternative news sources. Included with the dataset are source-level ground truth labels from 7 different assessment sites covering multiple dimensions of veracity. The NELA-GT-2019 dataset can be found at: https://doi.org/10.7910/DVN/O7FWPO
PeaCoK: Persona Commonsense Knowledge for Consistent and Engaging Narratives
Sustaining coherent and engaging narratives requires dialogue or storytelling agents to understand how the personas of speakers or listeners ground the narrative. Specifically, these agents must infer personas of their listeners to produce statements that cater to their interests. They must also learn to maintain consistent speaker personas for themselves throughout the narrative, so that their counterparts feel involved in a realistic conversation or story. However, personas are diverse and complex: they entail large quantities of rich interconnected world knowledge that is challenging to robustly represent in general narrative systems (e.g., a singer is good at singing, and may have attended conservatoire). In this work, we construct a new large-scale persona commonsense knowledge graph, PeaCoK, containing ~100K human-validated persona facts. Our knowledge graph schematizes five dimensions of persona knowledge identified in previous studies of human interactive behaviours, and distils facts in this schema from both existing commonsense knowledge graphs and large-scale pretrained language models. Our analysis indicates that PeaCoK contains rich and precise world persona inferences that help downstream systems generate more consistent and engaging narratives.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
Improving Factuality with Explicit Working Memory
Large language models can generate factually inaccurate content, a problem known as hallucination. Recent works have built upon retrieved-augmented generation to improve factuality through iterative prompting but these methods are limited by the traditional RAG design. To address these challenges, we introduce EWE (Explicit Working Memory), a novel approach that enhances factuality in long-form text generation by integrating a working memory that receives real-time feedback from external resources. The memory is refreshed based on online fact-checking and retrieval feedback, allowing EWE to rectify false claims during the generation process and ensure more accurate and reliable outputs. Our experiments demonstrate that Ewe outperforms strong baselines on four fact-seeking long-form generation datasets, increasing the factuality metric, VeriScore, by 2 to 10 points absolute without sacrificing the helpfulness of the responses. Further analysis reveals that the design of rules for memory updates, configurations of memory units, and the quality of the retrieval datastore are crucial factors for influencing model performance.
Bridging the Domain Gap for Stance Detection for the Zulu language
Misinformation has become a major concern in recent last years given its spread across our information sources. In the past years, many NLP tasks have been introduced in this area, with some systems reaching good results on English language datasets. Existing AI based approaches for fighting misinformation in literature suggest automatic stance detection as an integral first step to success. Our paper aims at utilizing this progress made for English to transfers that knowledge into other languages, which is a non-trivial task due to the domain gap between English and the target languages. We propose a black-box non-intrusive method that utilizes techniques from Domain Adaptation to reduce the domain gap, without requiring any human expertise in the target language, by leveraging low-quality data in both a supervised and unsupervised manner. This allows us to rapidly achieve similar results for stance detection for the Zulu language, the target language in this work, as are found for English. We also provide a stance detection dataset in the Zulu language. Our experimental results show that by leveraging English datasets and machine translation we can increase performances on both English data along with other languages.
Collaborative Transformers for Grounded Situation Recognition
Grounded situation recognition is the task of predicting the main activity, entities playing certain roles within the activity, and bounding-box groundings of the entities in the given image. To effectively deal with this challenging task, we introduce a novel approach where the two processes for activity classification and entity estimation are interactive and complementary. To implement this idea, we propose Collaborative Glance-Gaze TransFormer (CoFormer) that consists of two modules: Glance transformer for activity classification and Gaze transformer for entity estimation. Glance transformer predicts the main activity with the help of Gaze transformer that analyzes entities and their relations, while Gaze transformer estimates the grounded entities by focusing only on the entities relevant to the activity predicted by Glance transformer. Our CoFormer achieves the state of the art in all evaluation metrics on the SWiG dataset. Training code and model weights are available at https://github.com/jhcho99/CoFormer.