Papers
arxiv:2503.20757

MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search

Published on Mar 26
· Submitted by yilunzhao on Mar 27

Abstract

We introduce MCTS-RAG, a novel approach that enhances the reasoning capabilities of small language models on knowledge-intensive tasks by leveraging retrieval-augmented generation (RAG) to provide relevant context and Monte Carlo Tree Search (MCTS) to refine reasoning paths. MCTS-RAG dynamically integrates retrieval and reasoning through an iterative decision-making process. Unlike standard RAG methods, which typically retrieve information independently from reasoning and thus integrate knowledge suboptimally, or conventional MCTS reasoning, which depends solely on internal model knowledge without external facts, MCTS-RAG combines structured reasoning with adaptive retrieval. This integrated approach enhances decision-making, reduces hallucinations, and ensures improved factual accuracy and response consistency. The experimental results on multiple reasoning and knowledge-intensive datasets datasets (i.e., ComplexWebQA, GPQA, and FoolMeTwice) show that our method enables small-scale LMs to achieve performance comparable to frontier LLMs like GPT-4o by effectively scaling inference-time compute, setting a new standard for reasoning in small-scale models.

Community

Paper author Paper submitter

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on HF中国镜像站 checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2503.20757 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2503.20757 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2503.20757 in a Space README.md to link it from this page.

Collections including this paper 2