panagoa commited on
Commit
906612d
·
verified ·
1 Parent(s): 4ace6e1

Init version of LaBSE-kbd model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992990d6f469e8332310d44a3874c4a1cc7a06a188b54a4060e97e345cf97c32
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3395988
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: Tom grabbed Mary's elbow.
12
+ sentences:
13
+ - Tom, Mary'yi dirseğinden kavradı.
14
+ - Stay with her.
15
+ - Pourquoi a-t-il mangé l'abeille ?
16
+ - source_sentence: Жизнь - это тень.
17
+ sentences:
18
+ - Life is a shadow.
19
+ - I'm almost always at home on Sundays.
20
+ - Henüz bir vizem yok.
21
+ - source_sentence: Are you working tomorrow?
22
+ sentences:
23
+ - Yarın çalışacak mısın?
24
+ - Нобэ хуабей дыдэт.
25
+ - Мэри къэшэн имыIэну жеIэ.
26
+ - source_sentence: Вы нарушили закон.
27
+ sentences:
28
+ - Ахэр Iейщ.
29
+ - Tom war drei Tage nicht da.
30
+ - Vous avez enfreint la loi.
31
+ - source_sentence: We've never seen Tom this angry before.
32
+ sentences:
33
+ - Tom'u daha önce asla bu kadar öfkeli görmedik.
34
+ - Soyez attentive aux voleurs à la tire.
35
+ - Endişeli görünüyorsun.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/LaBSE
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: validation
49
+ type: validation
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: -0.2799955028525394
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: -0.32115994644018286
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/LaBSE
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision b7f947194ceae0ddf90bafe213722569e274ad28 -->
68
+ - **Maximum Sequence Length:** 256 tokens
69
+ - **Output Dimensionality:** 768 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **HF中国镜像站:** [Sentence Transformers on HF中国镜像站](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
88
+ (3): Normalize()
89
+ )
90
+ ```
91
+
92
+ ## Usage
93
+
94
+ ### Direct Usage (Sentence Transformers)
95
+
96
+ First install the Sentence Transformers library:
97
+
98
+ ```bash
99
+ pip install -U sentence-transformers
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+ ```python
104
+ from sentence_transformers import SentenceTransformer
105
+
106
+ # Download from the 🤗 Hub
107
+ model = SentenceTransformer("panagoa/LaBSE-kbd-v0.2")
108
+ # Run inference
109
+ sentences = [
110
+ "We've never seen Tom this angry before.",
111
+ "Tom'u daha önce asla bu kadar öfkeli görmedik.",
112
+ 'Soyez attentive aux voleurs à la tire.',
113
+ ]
114
+ embeddings = model.encode(sentences)
115
+ print(embeddings.shape)
116
+ # [3, 768]
117
+
118
+ # Get the similarity scores for the embeddings
119
+ similarities = model.similarity(embeddings, embeddings)
120
+ print(similarities.shape)
121
+ # [3, 3]
122
+ ```
123
+
124
+ <!--
125
+ ### Direct Usage (Transformers)
126
+
127
+ <details><summary>Click to see the direct usage in Transformers</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Downstream Usage (Sentence Transformers)
134
+
135
+ You can finetune this model on your own dataset.
136
+
137
+ <details><summary>Click to expand</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Out-of-Scope Use
144
+
145
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
146
+ -->
147
+
148
+ ## Evaluation
149
+
150
+ ### Metrics
151
+
152
+ #### Semantic Similarity
153
+
154
+ * Dataset: `validation`
155
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
156
+
157
+ | Metric | Value |
158
+ |:--------------------|:------------|
159
+ | pearson_cosine | -0.28 |
160
+ | **spearman_cosine** | **-0.3212** |
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### Unnamed Dataset
179
+
180
+ * Size: 3,395,988 training samples
181
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | sentence_0 | sentence_1 | label |
184
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
185
+ | type | string | string | float |
186
+ | details | <ul><li>min: 5 tokens</li><li>mean: 10.33 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.81 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.36</li><li>max: 0.98</li></ul> |
187
+ * Samples:
188
+ | sentence_0 | sentence_1 | label |
189
+ |:---------------------------------------|:--------------------------------------------|:--------------------------------|
190
+ | <code>Почему вас это удивило?</code> | <code>Сыт ар щIывгъэщIэгъуар?</code> | <code>0.9298050403594972</code> |
191
+ | <code>Ребёнка кто-нибудь видел?</code> | <code>Quelqu'un a-t-il vu l'enfant ?</code> | <code>0.0</code> |
192
+ | <code>Marie se couchait.</code> | <code>Мэри гъуэлъырт.</code> | <code>0.9330472946166992</code> |
193
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
194
+ ```json
195
+ {
196
+ "scale": 20.0,
197
+ "similarity_fct": "cos_sim"
198
+ }
199
+ ```
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `eval_strategy`: steps
205
+ - `per_device_train_batch_size`: 16
206
+ - `per_device_eval_batch_size`: 16
207
+ - `num_train_epochs`: 2
208
+ - `multi_dataset_batch_sampler`: round_robin
209
+
210
+ #### All Hyperparameters
211
+ <details><summary>Click to expand</summary>
212
+
213
+ - `overwrite_output_dir`: False
214
+ - `do_predict`: False
215
+ - `eval_strategy`: steps
216
+ - `prediction_loss_only`: True
217
+ - `per_device_train_batch_size`: 16
218
+ - `per_device_eval_batch_size`: 16
219
+ - `per_gpu_train_batch_size`: None
220
+ - `per_gpu_eval_batch_size`: None
221
+ - `gradient_accumulation_steps`: 1
222
+ - `eval_accumulation_steps`: None
223
+ - `torch_empty_cache_steps`: None
224
+ - `learning_rate`: 5e-05
225
+ - `weight_decay`: 0.0
226
+ - `adam_beta1`: 0.9
227
+ - `adam_beta2`: 0.999
228
+ - `adam_epsilon`: 1e-08
229
+ - `max_grad_norm`: 1.0
230
+ - `num_train_epochs`: 2
231
+ - `max_steps`: -1
232
+ - `lr_scheduler_type`: linear
233
+ - `lr_scheduler_kwargs`: {}
234
+ - `warmup_ratio`: 0.0
235
+ - `warmup_steps`: 0
236
+ - `log_level`: passive
237
+ - `log_level_replica`: warning
238
+ - `log_on_each_node`: True
239
+ - `logging_nan_inf_filter`: True
240
+ - `save_safetensors`: True
241
+ - `save_on_each_node`: False
242
+ - `save_only_model`: False
243
+ - `restore_callback_states_from_checkpoint`: False
244
+ - `no_cuda`: False
245
+ - `use_cpu`: False
246
+ - `use_mps_device`: False
247
+ - `seed`: 42
248
+ - `data_seed`: None
249
+ - `jit_mode_eval`: False
250
+ - `use_ipex`: False
251
+ - `bf16`: False
252
+ - `fp16`: False
253
+ - `fp16_opt_level`: O1
254
+ - `half_precision_backend`: auto
255
+ - `bf16_full_eval`: False
256
+ - `fp16_full_eval`: False
257
+ - `tf32`: None
258
+ - `local_rank`: 0
259
+ - `ddp_backend`: None
260
+ - `tpu_num_cores`: None
261
+ - `tpu_metrics_debug`: False
262
+ - `debug`: []
263
+ - `dataloader_drop_last`: False
264
+ - `dataloader_num_workers`: 0
265
+ - `dataloader_prefetch_factor`: None
266
+ - `past_index`: -1
267
+ - `disable_tqdm`: False
268
+ - `remove_unused_columns`: True
269
+ - `label_names`: None
270
+ - `load_best_model_at_end`: False
271
+ - `ignore_data_skip`: False
272
+ - `fsdp`: []
273
+ - `fsdp_min_num_params`: 0
274
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
275
+ - `fsdp_transformer_layer_cls_to_wrap`: None
276
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
277
+ - `deepspeed`: None
278
+ - `label_smoothing_factor`: 0.0
279
+ - `optim`: adamw_torch
280
+ - `optim_args`: None
281
+ - `adafactor`: False
282
+ - `group_by_length`: False
283
+ - `length_column_name`: length
284
+ - `ddp_find_unused_parameters`: None
285
+ - `ddp_bucket_cap_mb`: None
286
+ - `ddp_broadcast_buffers`: False
287
+ - `dataloader_pin_memory`: True
288
+ - `dataloader_persistent_workers`: False
289
+ - `skip_memory_metrics`: True
290
+ - `use_legacy_prediction_loop`: False
291
+ - `push_to_hub`: False
292
+ - `resume_from_checkpoint`: None
293
+ - `hub_model_id`: None
294
+ - `hub_strategy`: every_save
295
+ - `hub_private_repo`: None
296
+ - `hub_always_push`: False
297
+ - `gradient_checkpointing`: False
298
+ - `gradient_checkpointing_kwargs`: None
299
+ - `include_inputs_for_metrics`: False
300
+ - `include_for_metrics`: []
301
+ - `eval_do_concat_batches`: True
302
+ - `fp16_backend`: auto
303
+ - `push_to_hub_model_id`: None
304
+ - `push_to_hub_organization`: None
305
+ - `mp_parameters`:
306
+ - `auto_find_batch_size`: False
307
+ - `full_determinism`: False
308
+ - `torchdynamo`: None
309
+ - `ray_scope`: last
310
+ - `ddp_timeout`: 1800
311
+ - `torch_compile`: False
312
+ - `torch_compile_backend`: None
313
+ - `torch_compile_mode`: None
314
+ - `dispatch_batches`: None
315
+ - `split_batches`: None
316
+ - `include_tokens_per_second`: False
317
+ - `include_num_input_tokens_seen`: False
318
+ - `neftune_noise_alpha`: None
319
+ - `optim_target_modules`: None
320
+ - `batch_eval_metrics`: False
321
+ - `eval_on_start`: False
322
+ - `use_liger_kernel`: False
323
+ - `eval_use_gather_object`: False
324
+ - `average_tokens_across_devices`: False
325
+ - `prompts`: None
326
+ - `batch_sampler`: batch_sampler
327
+ - `multi_dataset_batch_sampler`: round_robin
328
+
329
+ </details>
330
+
331
+ ### Training Logs
332
+ <details><summary>Click to expand</summary>
333
+
334
+ | Epoch | Step | Training Loss | validation_spearman_cosine |
335
+ |:------:|:-----:|:-------------:|:--------------------------:|
336
+ | 0.0005 | 100 | - | -0.7761 |
337
+ | 0.0009 | 200 | - | -0.7598 |
338
+ | 0.0014 | 300 | - | -0.7485 |
339
+ | 0.0019 | 400 | - | -0.7412 |
340
+ | 0.0024 | 500 | 0.2864 | -0.7354 |
341
+ | 0.0028 | 600 | - | -0.7307 |
342
+ | 0.0033 | 700 | - | -0.7191 |
343
+ | 0.0038 | 800 | - | -0.7206 |
344
+ | 0.0042 | 900 | - | -0.7197 |
345
+ | 0.0047 | 1000 | 0.0463 | -0.7037 |
346
+ | 0.0052 | 1100 | - | -0.6866 |
347
+ | 0.0057 | 1200 | - | -0.6798 |
348
+ | 0.0061 | 1300 | - | -0.6844 |
349
+ | 0.0066 | 1400 | - | -0.6716 |
350
+ | 0.0071 | 1500 | 0.0184 | -0.6658 |
351
+ | 0.0075 | 1600 | - | -0.6620 |
352
+ | 0.0080 | 1700 | - | -0.6532 |
353
+ | 0.0085 | 1800 | - | -0.6455 |
354
+ | 0.0090 | 1900 | - | -0.6452 |
355
+ | 0.0094 | 2000 | 0.011 | -0.6360 |
356
+ | 0.0099 | 2100 | - | -0.6240 |
357
+ | 0.0104 | 2200 | - | -0.6220 |
358
+ | 0.0108 | 2300 | - | -0.6294 |
359
+ | 0.0113 | 2400 | - | -0.6038 |
360
+ | 0.0118 | 2500 | 0.0092 | -0.6116 |
361
+ | 0.0122 | 2600 | - | -0.5996 |
362
+ | 0.0127 | 2700 | - | -0.6120 |
363
+ | 0.0132 | 2800 | - | -0.5940 |
364
+ | 0.0137 | 2900 | - | -0.5848 |
365
+ | 0.0141 | 3000 | 0.0071 | -0.5958 |
366
+ | 0.0146 | 3100 | - | -0.5840 |
367
+ | 0.0151 | 3200 | - | -0.5944 |
368
+ | 0.0155 | 3300 | - | -0.5895 |
369
+ | 0.0160 | 3400 | - | -0.5849 |
370
+ | 0.0165 | 3500 | 0.0056 | -0.5708 |
371
+ | 0.0005 | 100 | - | -0.5686 |
372
+ | 0.0009 | 200 | - | -0.5608 |
373
+ | 0.0014 | 300 | - | -0.5587 |
374
+ | 0.0024 | 500 | 0.0053 | - |
375
+ | 0.0047 | 1000 | 0.0081 | -0.5882 |
376
+ | 0.0071 | 1500 | 0.0058 | - |
377
+ | 0.0094 | 2000 | 0.0064 | -0.5127 |
378
+ | 0.0118 | 2500 | 0.004 | - |
379
+ | 0.0141 | 3000 | 0.0042 | -0.4934 |
380
+ | 0.0165 | 3500 | 0.0048 | - |
381
+ | 0.0188 | 4000 | 0.0036 | -0.4762 |
382
+ | 0.0212 | 4500 | 0.0051 | - |
383
+ | 0.0236 | 5000 | 0.0054 | -0.4754 |
384
+ | 0.0259 | 5500 | 0.0054 | - |
385
+ | 0.0283 | 6000 | 0.0054 | -0.4609 |
386
+ | 0.0306 | 6500 | 0.0044 | - |
387
+ | 0.0330 | 7000 | 0.0048 | -0.4716 |
388
+ | 0.0353 | 7500 | 0.0061 | - |
389
+ | 0.0377 | 8000 | 0.0018 | -0.4293 |
390
+ | 0.0400 | 8500 | 0.0047 | - |
391
+ | 0.0424 | 9000 | 0.0043 | -0.4311 |
392
+ | 0.0448 | 9500 | 0.0034 | - |
393
+ | 0.0471 | 10000 | 0.0041 | -0.4429 |
394
+ | 0.0495 | 10500 | 0.0028 | - |
395
+ | 0.0518 | 11000 | 0.0032 | -0.4324 |
396
+ | 0.0542 | 11500 | 0.0025 | - |
397
+ | 0.0565 | 12000 | 0.0037 | -0.4374 |
398
+ | 0.0589 | 12500 | 0.003 | - |
399
+ | 0.0612 | 13000 | 0.005 | -0.4522 |
400
+ | 0.0636 | 13500 | 0.0051 | - |
401
+ | 0.0660 | 14000 | 0.0048 | -0.3994 |
402
+ | 0.0683 | 14500 | 0.0034 | - |
403
+ | 0.0707 | 15000 | 0.0032 | -0.4148 |
404
+ | 0.0730 | 15500 | 0.0046 | - |
405
+ | 0.0754 | 16000 | 0.0026 | -0.3848 |
406
+ | 0.0777 | 16500 | 0.0036 | - |
407
+ | 0.0801 | 17000 | 0.0051 | -0.3845 |
408
+ | 0.0824 | 17500 | 0.0031 | - |
409
+ | 0.0848 | 18000 | 0.0035 | -0.3500 |
410
+ | 0.0872 | 18500 | 0.0028 | - |
411
+ | 0.0895 | 19000 | 0.0021 | -0.3634 |
412
+ | 0.0919 | 19500 | 0.0025 | - |
413
+ | 0.0942 | 20000 | 0.0023 | -0.3428 |
414
+ | 0.0966 | 20500 | 0.0042 | - |
415
+ | 0.0989 | 21000 | 0.0038 | -0.3432 |
416
+ | 0.1013 | 21500 | 0.005 | - |
417
+ | 0.1037 | 22000 | 0.0024 | -0.3515 |
418
+ | 0.1060 | 22500 | 0.0029 | - |
419
+ | 0.1084 | 23000 | 0.0033 | -0.3929 |
420
+ | 0.1107 | 23500 | 0.003 | - |
421
+ | 0.1131 | 24000 | 0.0029 | -0.3309 |
422
+ | 0.1154 | 24500 | 0.0038 | - |
423
+ | 0.1178 | 25000 | 0.0028 | -0.3369 |
424
+ | 0.1201 | 25500 | 0.0025 | - |
425
+ | 0.1225 | 26000 | 0.002 | -0.3257 |
426
+ | 0.1249 | 26500 | 0.0025 | - |
427
+ | 0.1272 | 27000 | 0.0033 | -0.3659 |
428
+ | 0.1296 | 27500 | 0.0023 | - |
429
+ | 0.1319 | 28000 | 0.0031 | -0.3208 |
430
+ | 0.1343 | 28500 | 0.0027 | - |
431
+ | 0.1366 | 29000 | 0.0031 | -0.3298 |
432
+ | 0.1390 | 29500 | 0.0047 | - |
433
+ | 0.1413 | 30000 | 0.003 | -0.3460 |
434
+ | 0.1437 | 30500 | 0.004 | - |
435
+ | 0.1461 | 31000 | 0.0027 | -0.3567 |
436
+ | 0.1484 | 31500 | 0.0063 | - |
437
+ | 0.1508 | 32000 | 0.003 | -0.3382 |
438
+ | 0.1531 | 32500 | 0.0022 | - |
439
+ | 0.1555 | 33000 | 0.0048 | -0.3475 |
440
+ | 0.1578 | 33500 | 0.0021 | - |
441
+ | 0.1602 | 34000 | 0.0043 | -0.3323 |
442
+ | 0.1625 | 34500 | 0.0031 | - |
443
+ | 0.1649 | 35000 | 0.0024 | -0.3207 |
444
+ | 0.1673 | 35500 | 0.0029 | - |
445
+ | 0.1696 | 36000 | 0.0032 | -0.3004 |
446
+ | 0.1720 | 36500 | 0.0046 | - |
447
+ | 0.1743 | 37000 | 0.0033 | -0.3085 |
448
+ | 0.1767 | 37500 | 0.002 | - |
449
+ | 0.1790 | 38000 | 0.0022 | -0.3270 |
450
+ | 0.1814 | 38500 | 0.0036 | - |
451
+ | 0.1837 | 39000 | 0.0034 | -0.3042 |
452
+ | 0.1861 | 39500 | 0.0034 | - |
453
+ | 0.1885 | 40000 | 0.0016 | -0.3193 |
454
+ | 0.1908 | 40500 | 0.0026 | - |
455
+ | 0.1932 | 41000 | 0.0028 | -0.2945 |
456
+ | 0.1955 | 41500 | 0.0031 | - |
457
+ | 0.1979 | 42000 | 0.0016 | -0.2942 |
458
+ | 0.2002 | 42500 | 0.0021 | - |
459
+ | 0.2026 | 43000 | 0.003 | -0.2998 |
460
+ | 0.2049 | 43500 | 0.0042 | - |
461
+ | 0.2073 | 44000 | 0.0023 | -0.3245 |
462
+ | 0.2097 | 44500 | 0.0018 | - |
463
+ | 0.2120 | 45000 | 0.0021 | -0.3212 |
464
+
465
+ </details>
466
+
467
+ ### Framework Versions
468
+ - Python: 3.11.11
469
+ - Sentence Transformers: 3.4.1
470
+ - Transformers: 4.48.3
471
+ - PyTorch: 2.5.1+cu124
472
+ - Accelerate: 1.3.0
473
+ - Datasets: 3.3.2
474
+ - Tokenizers: 0.21.0
475
+
476
+ ## Citation
477
+
478
+ ### BibTeX
479
+
480
+ #### Sentence Transformers
481
+ ```bibtex
482
+ @inproceedings{reimers-2019-sentence-bert,
483
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
484
+ author = "Reimers, Nils and Gurevych, Iryna",
485
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
486
+ month = "11",
487
+ year = "2019",
488
+ publisher = "Association for Computational Linguistics",
489
+ url = "https://arxiv.org/abs/1908.10084",
490
+ }
491
+ ```
492
+
493
+ #### MultipleNegativesRankingLoss
494
+ ```bibtex
495
+ @misc{henderson2017efficient,
496
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
497
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
498
+ year={2017},
499
+ eprint={1705.00652},
500
+ archivePrefix={arXiv},
501
+ primaryClass={cs.CL}
502
+ }
503
+ ```
504
+
505
+ <!--
506
+ ## Glossary
507
+
508
+ *Clearly define terms in order to be accessible across audiences.*
509
+ -->
510
+
511
+ <!--
512
+ ## Model Card Authors
513
+
514
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
515
+ -->
516
+
517
+ <!--
518
+ ## Model Card Contact
519
+
520
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
521
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.48.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fe280b11724b508e3e83ae1bacc5e13647958fecbe3231caffd0ef70484735e
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff