mwitiderrick commited on
Commit
dbd36f8
·
1 Parent(s): 7bcf2bb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: GeneZC/MiniChat-1.5-3B
3
+ inference: false
4
+ model_type: llama
5
+ prompt_template: |
6
+ ### Instruction:\n
7
+ {prompt}
8
+ ### Response:\n
9
+ quantized_by: mwitiderrick
10
+ tags:
11
+ - deepsparse
12
+ ---
13
+ # open-llama-3b-everythingLM-2048 - DeepSparse
14
+ This repo contains model files for [open-llama-3b-everythingLM-2048](https://huggingface.co/harborwater/open-llama-3b-everythingLM-2048) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
+
16
+ This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
+ ## Inference
18
+ Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
19
+ ```bash
20
+ pip install deepsparse-nightly[llm]
21
+ ```
22
+ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
23
+ ```python
24
+ from deepsparse import TextGeneration
25
+
26
+ prompt = "How to make banana bread?"
27
+ formatted_prompt = f"### Instruction:\n### Input:{prompt}### Response:\n"
28
+
29
+ model = TextGeneration(model="hf:nm-testing/open-llama-3b-everythingLM-2048-pruned50-quant-ds")
30
+
31
+ print(model(formatted_prompt, max_new_tokens=100).generations[0].text)
32
+ """
33
+ 1. Pre-heat oven to 350 degrees F.
34
+ 2. Mix dry ingredients (flour, sugar, and salt) and butter.
35
+ 3. Add eggs and milk.
36
+ 4. Add banana and pecan.
37
+ 5. Add yeast.
38
+ 6. Add bread.
39
+ 7. Bake.
40
+ 8. Remove from oven.
41
+ 9. Cut into slices.
42
+ 10. Serve.
43
+
44
+ Reference:
45
+ 1. What is the difference between a banana
46
+
47
+ """
48
+ ```
49
+
50
+ ## Prompt template
51
+ ```
52
+
53
+ ### Instruction:
54
+ {prompt}
55
+ ### Response:
56
+
57
+ ```
58
+ ## Sparsification
59
+ For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
60
+
61
+ ```bash
62
+ git clone https://github.com/neuralmagic/sparseml
63
+ pip install -e "sparseml[transformers]"
64
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py mwitiderrick/open_llama_3b_instruct_v_0.2 open_platypus --recipe recipe.yaml --save True
65
+ python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
66
+ cp deployment/model.onnx deployment/model-orig.onnx
67
+ ```
68
+ Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
69
+ ```python
70
+ import os
71
+ import onnx
72
+ from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
73
+ input_file = "deployment/model-orig.onnx"
74
+ output_file = "deployment/model.onnx"
75
+ model = onnx.load(input_file, load_external_data=False)
76
+ model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
77
+ onnx.save(model, output_file)
78
+ print(f"Modified model saved to: {output_file}")
79
+ ```
80
+ Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
81
+ ## Slack
82
+
83
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)