Commit
·
b692d6d
1
Parent(s):
55c11c1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xlsr-tamil-commonvoice
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xlsr-tamil-commonvoice
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6145
|
20 |
+
- Wer: 0.8512
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 200
|
48 |
+
- num_epochs: 20
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 12.0478 | 1.05 | 100 | 3.3867 | 1.0 |
|
56 |
+
| 3.2522 | 2.11 | 200 | 3.2770 | 1.0 |
|
57 |
+
| 3.1689 | 3.16 | 300 | 3.1135 | 1.0039 |
|
58 |
+
| 2.9278 | 4.21 | 400 | 2.0485 | 1.3109 |
|
59 |
+
| 1.3592 | 5.26 | 500 | 0.8044 | 1.0988 |
|
60 |
+
| 0.7472 | 6.32 | 600 | 0.6571 | 0.9474 |
|
61 |
+
| 0.5842 | 7.37 | 700 | 0.6079 | 0.9477 |
|
62 |
+
| 0.4831 | 8.42 | 800 | 0.6083 | 0.9491 |
|
63 |
+
| 0.4259 | 9.47 | 900 | 0.5916 | 0.8973 |
|
64 |
+
| 0.3817 | 10.53 | 1000 | 0.6070 | 0.9147 |
|
65 |
+
| 0.338 | 11.58 | 1100 | 0.5873 | 0.8617 |
|
66 |
+
| 0.3123 | 12.63 | 1200 | 0.5983 | 0.8844 |
|
67 |
+
| 0.287 | 13.68 | 1300 | 0.6146 | 0.8988 |
|
68 |
+
| 0.2706 | 14.74 | 1400 | 0.6068 | 0.8754 |
|
69 |
+
| 0.2505 | 15.79 | 1500 | 0.5996 | 0.8638 |
|
70 |
+
| 0.2412 | 16.84 | 1600 | 0.6106 | 0.8481 |
|
71 |
+
| 0.2176 | 17.89 | 1700 | 0.6152 | 0.8520 |
|
72 |
+
| 0.2255 | 18.95 | 1800 | 0.6150 | 0.8540 |
|
73 |
+
| 0.216 | 20.0 | 1900 | 0.6145 | 0.8512 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.11.3
|
79 |
+
- Pytorch 1.10.0+cu102
|
80 |
+
- Datasets 1.13.3
|
81 |
+
- Tokenizers 0.10.3
|