--- library_name: transformers license: mit base_model: chandar-lab/NeoBERT tags: - generated_from_trainer metrics: - accuracy model-index: - name: NeoBERT_druglib_regression_6ep_5e-06lr results: [] --- # NeoBERT_druglib_regression_6ep_5e-06lr This model is a fine-tuned version of [chandar-lab/NeoBERT](https://huggingface.co/chandar-lab/NeoBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9323 - Accuracy: 0.6284 - Macro Precision: 0.6396 - Macro Recall: 0.5598 - Macro F1: 0.5573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:| | 1.2053 | 1.0 | 311 | 1.0258 | 0.5900 | 0.5546 | 0.4409 | 0.4394 | | 0.743 | 2.0 | 622 | 0.8838 | 0.6527 | 0.6404 | 0.5392 | 0.5352 | | 0.5941 | 3.0 | 933 | 0.9091 | 0.6624 | 0.6102 | 0.5566 | 0.5674 | | 0.4384 | 4.0 | 1244 | 1.0823 | 0.6592 | 0.6108 | 0.5464 | 0.5493 | | 0.138 | 5.0 | 1555 | 1.3475 | 0.6543 | 0.5926 | 0.5503 | 0.5600 | | 0.0683 | 6.0 | 1866 | 1.4926 | 0.6495 | 0.5865 | 0.5571 | 0.5668 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0