#include #include "registration.h" #include "torch_binding.h" TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Activation used in fused MoE layers. ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul); // Apply topk softmax to the gating outputs. ops.def("topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! " "token_expert_indices, Tensor gating_output) -> ()"); ops.impl("topk_softmax", torch::kCUDA, &topk_softmax); // Calculate the result of moe by summing up the partial results // from all selected experts. ops.def("moe_sum(Tensor! input, Tensor output) -> ()"); ops.impl("moe_sum", torch::kCUDA, &moe_sum); // Aligning the number of tokens to be processed by each expert such // that it is divisible by the block size. ops.def("moe_align_block_size(Tensor topk_ids, int num_experts," " int block_size, Tensor! sorted_token_ids," " Tensor! experts_ids," " Tensor! num_tokens_post_pad) -> ()"); ops.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size); // temporarily adapted from // https://github.com/sgl-project/sglang/commit/ded9fcd09a43d5e7d5bb31a2bc3e9fc21bf65d2a ops.def("sgl_moe_align_block_size(Tensor topk_ids, int num_experts," " int block_size, Tensor! sorted_token_ids," " Tensor! experts_ids," " Tensor! num_tokens_post_pad) -> ()"); ops.impl("sgl_moe_align_block_size", torch::kCUDA, &sgl_moe_align_block_size); // Compute FP8 quantized tensor for given scaling factor. ops.def( "static_scaled_fp8_quant(Tensor! result, Tensor input, Tensor scale) -> " "()"); ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant); // Compute dynamic-per-tensor FP8 quantized tensor and scaling factor. ops.def( "dynamic_scaled_fp8_quant(Tensor! result, Tensor input, Tensor! scale) " "-> " "()"); ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant); // Compute dynamic-per-token FP8 quantized tensor and scaling factor. ops.def("dynamic_per_token_scaled_fp8_quant(Tensor! result, Tensor input, " "Tensor! scale, Tensor? scale_ub) -> " "()"); ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, &dynamic_per_token_scaled_fp8_quant); #ifndef USE_ROCM ops.def("marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, " "Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! " "b_zeros, Tensor! g_idx, Tensor! perm, Tensor! workspace, " "int b_q_type, SymInt size_m, " "SymInt size_n, SymInt size_k, bool is_k_full, int num_experts, int " "topk, " "int moe_block_size, bool replicate_input, bool apply_weights)" " -> Tensor"); #endif } TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, ops) { ops.impl("marlin_gemm_moe", &marlin_gemm_moe); } REGISTER_EXTENSION(TORCH_EXTENSION_NAME)