kernel
moe / torch-ext /torch_binding.cpp
danieldk's picture
danieldk HF staff
Normalize some directory names
3d21f81
#include <torch/library.h>
#include "registration.h"
#include "torch_binding.h"
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// Activation used in fused MoE layers.
ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);
// Apply topk softmax to the gating outputs.
ops.def("topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
"token_expert_indices, Tensor gating_output) -> ()");
ops.impl("topk_softmax", torch::kCUDA, &topk_softmax);
// Calculate the result of moe by summing up the partial results
// from all selected experts.
ops.def("moe_sum(Tensor! input, Tensor output) -> ()");
ops.impl("moe_sum", torch::kCUDA, &moe_sum);
// Aligning the number of tokens to be processed by each expert such
// that it is divisible by the block size.
ops.def("moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
ops.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
// temporarily adapted from
// https://github.com/sgl-project/sglang/commit/ded9fcd09a43d5e7d5bb31a2bc3e9fc21bf65d2a
ops.def("sgl_moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
ops.impl("sgl_moe_align_block_size", torch::kCUDA, &sgl_moe_align_block_size);
// Compute FP8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_fp8_quant(Tensor! result, Tensor input, Tensor scale) -> "
"()");
ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant);
// Compute dynamic-per-tensor FP8 quantized tensor and scaling factor.
ops.def(
"dynamic_scaled_fp8_quant(Tensor! result, Tensor input, Tensor! scale) "
"-> "
"()");
ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant);
// Compute dynamic-per-token FP8 quantized tensor and scaling factor.
ops.def("dynamic_per_token_scaled_fp8_quant(Tensor! result, Tensor input, "
"Tensor! scale, Tensor? scale_ub) -> "
"()");
ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA,
&dynamic_per_token_scaled_fp8_quant);
#ifndef USE_ROCM
ops.def("marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, "
"Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! "
"b_zeros, Tensor! g_idx, Tensor! perm, Tensor! workspace, "
"int b_q_type, SymInt size_m, "
"SymInt size_n, SymInt size_k, bool is_k_full, int num_experts, int "
"topk, "
"int moe_block_size, bool replicate_input, bool apply_weights)"
" -> Tensor");
#endif
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, ops) {
ops.impl("marlin_gemm_moe", &marlin_gemm_moe);
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)