kernel
moe / fp8 /common.cu
danieldk's picture
danieldk HF staff
Sync with upstream
6eaa88c
#include "common.cuh"
#include "dispatch_utils.h"
#include <c10/cuda/CUDAGuard.h>
#ifndef USE_ROCM
#include <cub/cub.cuh>
#else
#include <hipcub/hipcub.hpp>
#endif
namespace vllm {
template <typename scalar_t>
__global__ void scaled_fp8_quant_kernel(FP8_TYPE* __restrict__ out,
const scalar_t* __restrict__ input,
const float* __restrict__ scale,
int64_t num_elems) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
// Invert the scale so that we can use multiplications to avoid expensive
// division.
const float inverted_scale = 1.0f / (*scale);
scaled_fp8_conversion_vec<scalar_t, true>(
out, input, inverted_scale, num_elems, tid, blockDim.x * gridDim.x);
}
template <typename scalar_t>
__global__ void dynamic_per_token_scaled_fp8_quant_kernel(
FP8_TYPE* __restrict__ out, float* __restrict__ scale,
scalar_t const* __restrict__ input, float const* __restrict__ scale_ub,
const int hidden_size) {
float const min_scaling_factor = 1.0f / (FP8_E4M3_MAX * 512.f);
int const tid = threadIdx.x;
int const token_idx = blockIdx.x;
// Use int64 to avoid overflowing an int32 when calculating this offset
int64_t offset = static_cast<int64_t>(token_idx) * hidden_size;
scalar_t const* __restrict__ token_input = &input[offset];
FP8_TYPE* __restrict__ token_output = &out[offset];
// For vectorization, token_input and token_output pointers need to be
// aligned at 8-byte and 4-byte addresses respectively.
bool const can_vectorize = hidden_size % 4 == 0;
float absmax_val = 0.0f;
if (can_vectorize) {
absmax_val = thread_max_vec(token_input, hidden_size, tid, blockDim.x);
} else {
for (int i = tid; i < hidden_size; i += blockDim.x) {
float const x = static_cast<float>(token_input[i]);
absmax_val = max(absmax_val, fabs(x));
}
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
float const block_absmax_val_maybe =
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
__shared__ float token_scale;
if (tid == 0) {
if (scale_ub) {
token_scale = min(block_absmax_val_maybe, *scale_ub);
} else {
token_scale = block_absmax_val_maybe;
}
// token scale computation
token_scale = max(token_scale / FP8_E4M3_MAX, min_scaling_factor);
scale[token_idx] = token_scale;
}
__syncthreads();
// Note that we don't use inverted scales so we can match FBGemm impl.
if (can_vectorize) {
scaled_fp8_conversion_vec<scalar_t, false>(
token_output, token_input, token_scale, hidden_size, tid, blockDim.x);
} else {
for (int i = tid; i < hidden_size; i += blockDim.x) {
token_output[i] = scaled_fp8_conversion<false>(
static_cast<float>(token_input[i]), token_scale);
}
}
}
} // namespace vllm
void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor const& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "scaled_fp8_quant_kernel", [&] {
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<FP8_TYPE>(), input.data_ptr<scalar_t>(),
scale.data_ptr<float>(), num_elems);
});
}
void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "scaled_fp8_quant_kernel", [&] {
vllm::segmented_max_reduction<scalar_t><<<grid, block, 0, stream>>>(
scale.data_ptr<float>(), input.data_ptr<scalar_t>(), num_elems);
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<FP8_TYPE>(), input.data_ptr<scalar_t>(),
scale.data_ptr<float>(), num_elems);
});
}
void dynamic_per_token_scaled_fp8_quant(
torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor& scales, std::optional<at::Tensor> const& scale_ub) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_per_token_scaled_fp8_quant_kernel", [&] {
vllm::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t>
<<<grid, block, 0, stream>>>(
out.data_ptr<FP8_TYPE>(), scales.data_ptr<float>(),
input.data_ptr<scalar_t>(),
scale_ub.has_value() ? scale_ub->data_ptr<float>() : nullptr,
hidden_size);
});
}