import torch import torch.nn as nn import math from torch.nn.attention import SDPBackend, sdpa_kernel from torch.nn import functional as F class PrefixEncoder(torch.nn.Module): def __init__(self,config): super(PrefixEncoder,self).__init__() self.config=config self.device=config.device self.dtype=config.dtype self.num_virtual_tokens=config.num_virtual_tokens self.token_dim=config.token_dim self.encoder_hidden_size=config.encoder_hidden_size self.num_layers=config.num_layers self.prefix_embedding=nn.Parameter(torch.empty(1,self.num_virtual_tokens,self.num_layers*2*self.token_dim,device=config.device,dtype=config.dtype),requires_grad=False) def forward(self,input_ids,batch_size): prefix_embedding=self.prefix_embedding prefix_embedding=prefix_embedding.expand(batch_size,self.num_virtual_tokens,self.num_layers*2*self.token_dim) prefix_embedding=prefix_embedding.reshape(batch_size,self.num_virtual_tokens,self.num_layers,2,self.token_dim) prefix_embedding=prefix_embedding.permute(3,2,0,1,4) k,v=prefix_embedding.chunk(2,dim=0) return (k.squeeze(0),v.squeeze(0)) class Transformer(nn.Module): def __init__(self,config): super(Transformer,self).__init__() self.resblocks=nn.ModuleList([ResidualAttentionBlock(config) for _ in range(config.num_layers)]) self.prefix=PrefixEncoder(config) prefix_tokens=torch.arange(0,config.num_virtual_tokens,device=config.device,dtype=torch.long) self.register_buffer("prefix_tokens",prefix_tokens) def forward(self,hidden_state,use_emotion): if use_emotion: #print("激活text transformer prefix.") b,n,h=hidden_state.shape prefix_k,prefix_v=self.prefix(self.prefix_tokens,b) for index,resblock in enumerate(self.resblocks): hidden_state=resblock(hidden_state,prefix_k[index],prefix_v[index]) return hidden_state else: for index,resblock in enumerate(self.resblocks): hidden_state=resblock(hidden_state) return hidden_state class ResidualAttentionBlock(nn.Module): def __init__(self,config): super(ResidualAttentionBlock,self).__init__() self.ln_1=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) self.ln_2=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) #self.attn=nn.MultiheadAttention(config.hidden_size,config.num_heads,device=config.device,dtype=config.dtype) self.attn=MultiHeadAttention(config) self.mlp=MLP(config) def forward(self,hidden_state,prefix_k=None,prefix_v=None): residual=hidden_state hidden_state=self.ln_1(hidden_state) hidden_state=self.attn(hidden_state,prefix_k,prefix_v) hidden_state=residual+hidden_state residual=hidden_state hidden_state=self.ln_2(hidden_state) hidden_state=self.mlp(hidden_state) hidden_state=residual+hidden_state return hidden_state class MultiHeadAttention(nn.Module): def __init__(self,config): super(MultiHeadAttention,self).__init__() self.hidden_size=config.hidden_size self.num_heads=config.num_heads self.head_size=self.hidden_size//self.num_heads #nn.Parameter包含weight和bias可训练参数 self.in_proj_weight=nn.Parameter(torch.empty(3*config.hidden_size,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False) self.in_proj_bias=nn.Parameter(torch.empty(3*config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False) #self.q_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) #self.k_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) #self.v_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) self.out_proj=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device,dtype=config.dtype) def forward(self,hidden_state,prefix_k=None,prefix_v=None): b,n,c=hidden_state.shape #q=self.q_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3) #k=self.k_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,3,1) #v=self.v_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3) q,k,v=(torch.matmul(hidden_state,self.in_proj_weight.T)+self.in_proj_bias.expand(b,n,-1)).chunk(3,dim=-1) if prefix_k is not None and prefix_v is not None: #将前缀插入到序列之前 k=torch.cat((prefix_k,k),dim=1) v=torch.cat((prefix_v,v),dim=1) #print("model origin k :",k[:,0,0]) bk,nk,hk=k.shape bq,nq,hq=q.shape q=q.view(bq,nq,self.num_heads,self.head_size).permute(0,2,1,3) k=k.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3) v=v.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3) attention_logits=F.scaled_dot_product_attention(q, k, v) attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(bk,nq,self.hidden_size) attention_output=self.out_proj(attention_logits) return attention_output class GELU(nn.Module): """ 误差函数erf: erf(x)=2/sqrt(pi)*integral(exp(-t^2),t=0,x) 其中t是一个虚拟变量,用于表示从0到x的积分范围内的每一个点,具体来说: x是误差函数的输入参数,表示积分的上限 t是积分变量,它从0变化到x,在每个点上计算e-t^2的值 e-t^2是被积函数,表示每个t点上的高斯分布的概率密度。 通过积分,误差函数计算了从0到x的高斯分布的概率累积值,具体来说,误差函数的积分部分计算的是区间[0,x]内高斯分布的概率密度的积分 """ def forward(self,x): return 0.5*x*(1.0+torch.erf(x/torch.sqrt(2.0))) class QuickGELU(nn.Module): def __init__(self): super(QuickGELU,self).__init__() def forward(self,x): old_dtype=x.dtype x=x.to(torch.float32) return (x*torch.sigmoid(1.702*x)).to(old_dtype) class MLP(nn.Module): def __init__(self,config): super(MLP,self).__init__() self.hidden_size=config.hidden_size self.c_fc=nn.Linear(self.hidden_size,4*self.hidden_size,device=config.device,bias=True,dtype=config.dtype) self.gelu=QuickGELU() self.c_proj=nn.Linear(self.hidden_size*4,self.hidden_size,device=config.device,bias=True,dtype=config.dtype) def forward(self,hidden_state): hidden_state=self.c_fc(hidden_state) hidden_state=self.gelu(hidden_state) hidden_state=self.c_proj(hidden_state) return hidden_state class Config: def __init__(self,vocab_size,max_position_embeddings,hidden_size,num_layers,num_heads,device,dtype): self.vocab_size=vocab_size self.max_position_embeddings=max_position_embeddings self.hidden_size=hidden_size self.num_layers=num_layers self.num_heads=num_heads self.device=device self.dtype=dtype self.norm_eps=1e-5 self.num_virtual_tokens=20 self.token_dim=hidden_size self.encoder_hidden_size=hidden_size config=Config( vocab_size=49408, max_position_embeddings=77, hidden_size=512, num_layers=12, num_heads=8, device=torch.device('cuda:0'), dtype=torch.float16 ) class TextEncoder(nn.Module): def __init__(self,config): super(TextEncoder,self).__init__() self.token_embedding=nn.Embedding(config.vocab_size,config.hidden_size,device=config.device,dtype=config.dtype) self.positional_embedding=nn.Parameter(torch.zeros(config.max_position_embeddings,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False) self.transformer=Transformer(config) self.ln_final=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) def forward(self,input_ids): b,n=input_ids.shape prompt_embedding,token_embeddings=self.token_embedding(input_ids) position_ids=torch.arange(n,device=config.device,dtype=config.dtype).unsqueeze(0).expand(b,n) position_embeddings=self.positional_embedding[position_ids] embeddings=token_embeddings+position_embeddings embeddings=torch.cat((prompt_embedding,embeddings),dim=1) embeddings=self.transformer(embeddings) embeddings=self.ln_final(embeddings) return embeddings text_encoder=Transformer(config)