import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math import os import sys #huggingface实现的前缀微调 class PrefixEncoder(torch.nn.Module): def __init__(self,config): super(PrefixEncoder,self).__init__() self.config=config self.device=config.device self.dtype=config.dtype self.num_virtual_tokens=config.num_virtual_tokens self.embedding=torch.nn.Embedding(config.num_virtual_tokens,config.token_dim,device=config.device,dtype=config.dtype) self.token_dim=config.token_dim self.encoder_hidden_size=config.encoder_hidden_size self.num_layers=config.num_layers self.transformer=torch.nn.Sequential( torch.nn.Linear(self.token_dim,self.encoder_hidden_size,device=self.device,dtype=self.dtype), torch.nn.Tanh(), torch.nn.Linear(self.encoder_hidden_size,self.num_layers*2*self.token_dim,device=self.device,dtype=self.dtype), ) def forward(self,input_ids,batch_size): input_ids=input_ids.unsqueeze(0) prefix_embedding=self.embedding(input_ids) prefix_embedding=self.transformer(prefix_embedding) self.register_parameter("prefix_embedding",nn.Parameter(prefix_embedding,requires_grad=False)) prefix_embedding=prefix_embedding.expand(batch_size,self.num_virtual_tokens,self.num_layers*2*self.token_dim) prefix_embedding=prefix_embedding.reshape(batch_size,self.num_virtual_tokens,self.num_layers,2,self.token_dim) prefix_embedding=prefix_embedding.permute(3,2,0,1,4) del self.embedding del self.transformer k,v=prefix_embedding.chunk(2,dim=0) return (k.squeeze(0),v.squeeze(0)) import torch import torch.nn as nn import math from torch.nn.attention import SDPBackend, sdpa_kernel from torch.nn import functional as F def position_embedding(x,position_ids): hidden_size=x.size(2) seq_len=x.size(1) div_term=torch.exp(torch.arange(0,hidden_size,2,device=x.device).float()*(-math.log(10000.0)/hidden_size)) positional_encoding=torch.zeros(seq_len,hidden_size,device=x.device) positional_encoding[:,0::2]=torch.sin(position_ids.float()[:,None]*div_term) positional_encoding[:,1::2]=torch.cos(position_ids.float()[:,None]*div_term) positional_encoding=positional_encoding.unsqueeze(0) return positional_encoding class VisionTransformer(nn.Module): def __init__(self,config): super(VisionTransformer,self).__init__() self.image_channel=config.image_channel self.hidden_size=config.hidden_size self.norm_eps=config.norm_eps self.patch_size=config.patch_size self.output_dim=config.output_dim self.dtype=config.dtype self.num_patches=config.num_patches self.num_virtual_tokens=config.num_virtual_tokens if hasattr(config,"num_virtual_tokens") else None self.conv1=nn.Conv2d(self.image_channel,self.hidden_size,self.patch_size,stride=self.patch_size,bias=False,device=config.device,dtype=config.dtype) self.ln_pre=nn.LayerNorm(self.hidden_size,eps=self.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) self.transformer=Transformer(config) #self.position_ids=torch.arange(config.num_patches+1,dtype=torch.long,device=config.device) #self.position_embeddings=nn.Parameter(torch.zeros(1,config.num_patches+1,config.hidden_size)) #nn.init.normal_(self.position_embeddings) #clsToken,用于图像分类任务 #self.cls_token=nn.Parameter(torch.zeros(1,1,config.hidden_size,device=config.device)) #分类token不是可训练参数 self.class_embedding=nn.Parameter(torch.empty(config.hidden_size,device=config.device),requires_grad=False) #很明显这里的position_embedding也是一个可学习参数 self.positional_embedding=nn.Parameter(torch.empty(config.num_patches+1,config.hidden_size,device=config.device),requires_grad=False) #可训练参数 self.proj=nn.Parameter(torch.empty(config.hidden_size,config.output_dim,device=config.device,dtype=config.dtype),requires_grad=False) self.ln_post=nn.LayerNorm(self.hidden_size,eps=self.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) def forward(self,hidden_state,use_emotion): b,c,h,w=hidden_state.shape #获得embedding向量 hidden_state=self.conv1(hidden_state) hidden_state=hidden_state.reshape(b,self.hidden_size,-1).transpose(1,2) #添加cls token embedding hidden_state=torch.cat((self.class_embedding.expand(b,1,-1).to(hidden_state.dtype),hidden_state),dim=1) #使用transformer原论文中的固定位置嵌入 #hidden_state=hidden_state+position_embedding(hidden_state,self.position_ids) hidden_state=hidden_state+self.positional_embedding.unsqueeze(0).to(hidden_state.dtype) hidden_state=self.ln_pre(hidden_state) hidden_state=self.transformer(hidden_state,use_emotion) #提取cls token输出 与image patch输出 cls_state=hidden_state[:,0,:] cls_state=self.ln_post(cls_state) cls_state=torch.matmul(cls_state,self.proj) #image_state=hidden_state[:,1:,:] #image_state size (batch_size,49,768) return cls_state class Transformer(nn.Module): def __init__(self,config): super(Transformer,self).__init__() self.resblocks=nn.ModuleList([ResidualAttentionBlock(config) for _ in range(config.num_layers)]) self.prefix=PrefixEncoder(config) prefix_tokens=torch.arange(0,config.num_virtual_tokens,device=config.device,dtype=torch.long) self.register_buffer("prefix_tokens",prefix_tokens) def forward(self,hidden_state,use_emotion): if use_emotion: b,n,h=hidden_state.shape prefix_k,prefix_v=self.prefix(self.prefix_tokens,b) for index,resblock in enumerate(self.resblocks): #在每一层之前提取前缀向量输入到resblock中进行拼接 hidden_state=resblock(hidden_state,prefix_k[index],prefix_v[index]) return hidden_state else: for index,resblock in enumerate(self.resblocks): #在每一层之前提取前缀向量输入到resblock中进行拼接 hidden_state=resblock(hidden_state) return hidden_state class ResidualAttentionBlock(nn.Module): def __init__(self,config): super(ResidualAttentionBlock,self).__init__() self.ln_1=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) self.ln_2=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) #self.attn=nn.MultiheadAttention(config.hidden_size,config.num_heads,device=config.device,dtype=config.dtype) self.attn=MultiHeadAttention(config) self.mlp=MLP(config) def forward(self,hidden_state,prefix_k=None,prefix_v=None): residual=hidden_state hidden_state=self.ln_1(hidden_state) hidden_state=self.attn(hidden_state,prefix_k,prefix_v) hidden_state=residual+hidden_state residual=hidden_state hidden_state=self.ln_2(hidden_state) hidden_state=self.mlp(hidden_state) hidden_state=residual+hidden_state return hidden_state class MultiHeadAttention(nn.Module): def __init__(self,config): super(MultiHeadAttention,self).__init__() self.hidden_size=config.hidden_size self.num_heads=config.num_heads self.head_size=self.hidden_size//self.num_heads #nn.Parameter包含weight和bias可训练参数 self.in_proj_weight=nn.Parameter(torch.empty(3*config.hidden_size,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False) self.in_proj_bias=nn.Parameter(torch.empty(3*config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False) #self.q_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) #self.k_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) #self.v_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) self.out_proj=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device,dtype=config.dtype) def forward(self,hidden_state,prefix_k=None,prefix_v=None): b,n,h=hidden_state.shape #q=self.q_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3) #k=self.k_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,3,1) #v=self.v_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3) q,k,v=(torch.matmul(hidden_state,self.in_proj_weight.T)+self.in_proj_bias.expand(b,n,-1)).chunk(3,dim=-1) if prefix_k is not None and prefix_v is not None: #将前缀插入到序列之前 #print("origional k.shape",prefix_k.shape) k=torch.cat((prefix_k,k),dim=1) v=torch.cat((prefix_v,v),dim=1) #print("model original k :",k[:,0,0]) bk,nk,hk=k.shape bq,nq,hq=q.shape q=q.view(bq,nq,self.num_heads,self.head_size).permute(0,2,1,3) k=k.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3) v=v.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3) attention_logits=F.scaled_dot_product_attention(q, k, v) attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(bk,nq,self.hidden_size) attention_output=self.out_proj(attention_logits) return attention_output class GELU(nn.Module): """ 误差函数erf: erf(x)=2/sqrt(pi)*integral(exp(-t^2),t=0,x) 其中t是一个虚拟变量,用于表示从0到x的积分范围内的每一个点,具体来说: x是误差函数的输入参数,表示积分的上限 t是积分变量,它从0变化到x,在每个点上计算e-t^2的值 e-t^2是被积函数,表示每个t点上的高斯分布的概率密度。 通过积分,误差函数计算了从0到x的高斯分布的概率累积值,具体来说,误差函数的积分部分计算的是区间[0,x]内高斯分布的概率密度的积分 """ def forward(self,x): old_dtype=x.dtype x=x.to(torch.float32) return (0.5*x*(1.0+torch.erf(x/torch.sqrt(2.0)))).to(old_dtype) class QuickGELU(nn.Module): def __init__(self): super(QuickGELU,self).__init__() def forward(self,x): old_dtype=x.dtype x=x.to(torch.float32) return (x*torch.sigmoid(1.702*x)).to(old_dtype) class MLP(nn.Module): def __init__(self,config): super(MLP,self).__init__() self.hidden_size=config.hidden_size self.c_fc=nn.Linear(self.hidden_size,4*self.hidden_size,device=config.device,bias=True,dtype=config.dtype) self.gelu=QuickGELU() self.c_proj=nn.Linear(self.hidden_size*4,self.hidden_size,device=config.device,bias=True,dtype=config.dtype) def forward(self,hidden_state): hidden_state=self.c_fc(hidden_state) hidden_state=self.gelu(hidden_state) hidden_state=self.c_proj(hidden_state) return hidden_state class ViTConfig: def __init__(self,image_channel,hidden_size,num_heads,num_layers,patch_size,num_patches,output_dim,norm_eps,device): self.image_channel=image_channel self.hidden_size=hidden_size self.num_heads=num_heads self.num_layers=num_layers self.patch_size=patch_size self.num_patches=num_patches self.norm_eps=norm_eps self.device=device self.dtype=torch.float16 self.patch_token_num=self.hidden_size//self.patch_size**2+1 self.output_dim=output_dim self.num_virtual_tokens=20 self.token_dim=self.hidden_size self.encoder_hidden_size=self.hidden_size config=ViTConfig(3,768,12,12,32,49,512,1e-5,torch.device("cuda")) model=VisionTransformer(config)