Text-to-Speech
English
File size: 7,625 Bytes
3354499
 
c3327e9
85cb1ba
8bc190a
 
 
85cb1ba
 
 
8bc190a
21e7170
3354499
 
6bafe60
3354499
21e7170
 
 
 
 
 
3354499
 
 
 
 
 
94519cf
0cbe210
 
8bc190a
3354499
21e7170
3354499
85cb1ba
 
6bafe60
4d9ba51
 
c3327e9
4d9ba51
 
 
 
 
 
 
 
 
8bc190a
4d9ba51
 
 
 
 
 
 
 
8bc190a
3354499
21e7170
3354499
85cb1ba
 
6bafe60
4d9ba51
 
 
 
 
 
 
 
 
 
6bafe60
8bc190a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e7170
6bafe60
85cb1ba
 
 
6bafe60
4d9ba51
 
 
69707a9
21e7170
69707a9
85cb1ba
 
 
69707a9
4d9ba51
 
 
 
 
 
69707a9
21e7170
b13b1ae
85cb1ba
 
 
b13b1ae
 
 
 
 
 
8bc190a
e2b4e50
8bc190a
 
e2b4e50
8bc190a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Voices

- 🇺🇸 [American English](#american-english): 11F 9M
- 🇬🇧 [British English](#british-english): 4F 4M
- 🇯🇵 [Japanese](#japanese): 4F 1M
- 🇨🇳 [Mandarin Chinese](#mandarin-chinese): 4F 4M
- 🇪🇸 [Spanish](#spanish): 1F 2M
- 🇫🇷 [French](#french): 1F
- 🇮🇳 [Hindi](#hindi): 2F 2M
- 🇮🇹 [Italian](#italian): 1F 1M
- 🇧🇷 [Brazilian Portuguese](#brazilian-portuguese): 1F 2M

For each voice, the given grades are intended to be estimates of the **quality and quantity** of its associated training data, both of which impact overall inference quality.

Subjectively, voices will sound better or worse to different people.

Support for non-English languages may be absent or thin due to weak G2P and/or lack of training data. Some languages are only represented by a small handful or even just one voice (French).

Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 possible. Voices may perform worse at the extremes:
- **Weakness** on short utterances, especially less than 10-20 tokens. Root cause could be lack of short-utterance training data and/or model architecture. One possible inference mitigation is to bundle shorter utterances together.
- **Rushing** on long utterances, especially over 400 tokens. You can chunk down to shorter utterances or adjust the `speed` parameter to mitigate this.

**Target Quality**
- How high quality is the reference voice? This grade may be impacted by audio quality, artifacts, compression, & sample rate.
- How well do the text labels match the audio? Text/audio misalignment (e.g. from hallucinations) will lower this grade.

**Training Duration**
- How much audio was seen during training? Smaller durations result in a lower overall grade.
- 10 hours <= **HH hours** < 100 hours
- 1 hour <= H hours < 10 hours
- 10 minutes <= MM minutes < 100 minutes
- 1 minute <= _M minutes_ 🤏 < 10 minutes

### American English

- `lang_code='a'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `en-us` fallback

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| **af\_heart** | 🚺❤️ | | | **A** | `0ab5709b` |
| af_alloy | 🚺 | B | MM minutes | C | `6d877149` |
| af_aoede | 🚺 | B | H hours | C+ | `c03bd1a4` |
| af_bella | 🚺🔥 | **A** | **HH hours** | **A-** | `8cb64e02` |
| af_jessica | 🚺 | C | MM minutes | D | `cdfdccb8` |
| af_kore | 🚺 | B | H hours | C+ | `8bfbc512` |
| af_nicole | 🚺🎧 | B | **HH hours** | B- | `c5561808` |
| af_nova | 🚺 | B | MM minutes | C | `e0233676` |
| af_river | 🚺 | C | MM minutes | D | `e149459b` |
| af_sarah | 🚺 | B | H hours | C+ | `49bd364e` |
| af_sky | 🚺 | B | _M minutes_ 🤏 | C- | `c799548a` |
| am_adam | 🚹 | D | H hours | F+ | `ced7e284` |
| am_echo | 🚹 | C | MM minutes | D | `8bcfdc85` |
| am_eric | 🚹 | C | MM minutes | D | `ada66f0e` |
| am_fenrir | 🚹 | B | H hours | C+ | `98e507ec` |
| am_liam | 🚹 | C | MM minutes | D | `c8255075` |
| am_michael | 🚹 | B | H hours | C+ | `9a443b79` |
| am_onyx | 🚹 | C | MM minutes | D | `e8452be1` |
| am_puck | 🚹 | B | H hours | C+ | `dd1d8973` |
| am_santa | 🚹 | C | _M minutes_ 🤏 | D- | `7f2f7582` |

### British English

- `lang_code='b'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `en-gb` fallback

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| bf_alice | 🚺 | C | MM minutes | D | `d292651b` |
| bf_emma | 🚺 | B | **HH hours** | B- | `d0a423de` |
| bf_isabella | 🚺 | B | MM minutes | C | `cdd4c370` |
| bf_lily | 🚺 | C | MM minutes | D | `6e09c2e4` |
| bm_daniel | 🚹 | C | MM minutes | D | `fc3fce4e` |
| bm_fable | 🚹 | B | MM minutes | C | `d44935f3` |
| bm_george | 🚹 | B | MM minutes | C | `f1bc8122` |
| bm_lewis | 🚹 | C | H hours | D+ | `b5204750` |

### Japanese

- `lang_code='j'` in [`misaki[ja]`](https://github.com/hexgrad/misaki)
- Total Japanese training data: H hours

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
| jf_alpha | 🚺 | B | H hours | C+ | `1bf4c9dc` | |
| jf_gongitsune | 🚺 | B | MM minutes | C | `1b171917` | [gongitsune](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__gongitsune.txt) |
| jf_nezumi | 🚺 | B | _M minutes_ 🤏 | C- | `d83f007a` | [nezuminoyomeiri](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__nezuminoyomeiri.txt) |
| jf_tebukuro | 🚺 | B | MM minutes | C | `0d691790` | [tebukurowokaini](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__tebukurowokaini.txt) |
| jm_kumo | 🚹 | B | _M minutes_ 🤏 | C- | `98340afd` | [kumonoito](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__kumonoito.txt) |

### Mandarin Chinese

- `lang_code='z'` in [`misaki[zh]`](https://github.com/hexgrad/misaki)
- Total Mandarin Chinese training data: H hours

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| zf_xiaobei | 🚺 | C | MM minutes | D | `9b76be63` |
| zf_xiaoni | 🚺 | C | MM minutes | D | `95b49f16` |
| zf_xiaoxiao | 🚺 | C | MM minutes | D | `cfaf6f2d` |
| zf_xiaoyi | 🚺 | C | MM minutes | D | `b5235dba` |
| zm_yunjian | 🚹 | C | MM minutes | D | `76cbf8ba` |
| zm_yunxi | 🚹 | C | MM minutes | D | `dbe6e1ce` |
| zm_yunxia | 🚹 | C | MM minutes | D | `bb2b03b0` |
| zm_yunyang | 🚹 | C | MM minutes | D | `5238ac22` |

### Spanish

- `lang_code='e'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `es`

| Name | Traits | SHA256 |
| ---- | ------ | ------ |
| ef_dora | 🚺 | `d9d69b0f` |
| em_alex | 🚹 | `5eac53f7` |
| em_santa | 🚹 | `aa8620cb` |

### French

- `lang_code='f'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `fr-fr`
- Total French training data: <11 hours

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
| ff_siwis | 🚺 | B | <11 hours | B- | `8073bf2d` | [SIWIS](https://datashare.ed.ac.uk/handle/10283/2353) |

### Hindi

- `lang_code='h'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `hi`
- Total Hindi training data: H hours

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| hf_alpha | 🚺 | B | MM minutes | C | `06906fe0` |
| hf_beta | 🚺 | B | MM minutes | C | `63c0a1a6` |
| hm_omega | 🚹 | B | MM minutes | C | `b55f02a8` |
| hm_psi | 🚹 | B | MM minutes | C | `2f0f055c` |

### Italian

- `lang_code='i'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `it`
- Total Italian training data: H hours

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| if_sara | 🚺 | B | MM minutes | C | `6c0b253b` |
| im_nicola | 🚹 | B | MM minutes | C | `234ed066` |

### Brazilian Portuguese

- `lang_code='p'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `pt-br`

| Name | Traits | SHA256 |
| ---- | ------ | ------ |
| pf_dora | 🚺 | `07e4ff98` |
| pm_alex | 🚹 | `cf0ba8c5` |
| pm_santa | 🚹 | `d4210316` |