File size: 7,625 Bytes
3354499 c3327e9 85cb1ba 8bc190a 85cb1ba 8bc190a 21e7170 3354499 6bafe60 3354499 21e7170 3354499 94519cf 0cbe210 8bc190a 3354499 21e7170 3354499 85cb1ba 6bafe60 4d9ba51 c3327e9 4d9ba51 8bc190a 4d9ba51 8bc190a 3354499 21e7170 3354499 85cb1ba 6bafe60 4d9ba51 6bafe60 8bc190a 21e7170 6bafe60 85cb1ba 6bafe60 4d9ba51 69707a9 21e7170 69707a9 85cb1ba 69707a9 4d9ba51 69707a9 21e7170 b13b1ae 85cb1ba b13b1ae 8bc190a e2b4e50 8bc190a e2b4e50 8bc190a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Voices
- 🇺🇸 [American English](#american-english): 11F 9M
- 🇬🇧 [British English](#british-english): 4F 4M
- 🇯🇵 [Japanese](#japanese): 4F 1M
- 🇨🇳 [Mandarin Chinese](#mandarin-chinese): 4F 4M
- 🇪🇸 [Spanish](#spanish): 1F 2M
- 🇫🇷 [French](#french): 1F
- 🇮🇳 [Hindi](#hindi): 2F 2M
- 🇮🇹 [Italian](#italian): 1F 1M
- 🇧🇷 [Brazilian Portuguese](#brazilian-portuguese): 1F 2M
For each voice, the given grades are intended to be estimates of the **quality and quantity** of its associated training data, both of which impact overall inference quality.
Subjectively, voices will sound better or worse to different people.
Support for non-English languages may be absent or thin due to weak G2P and/or lack of training data. Some languages are only represented by a small handful or even just one voice (French).
Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 possible. Voices may perform worse at the extremes:
- **Weakness** on short utterances, especially less than 10-20 tokens. Root cause could be lack of short-utterance training data and/or model architecture. One possible inference mitigation is to bundle shorter utterances together.
- **Rushing** on long utterances, especially over 400 tokens. You can chunk down to shorter utterances or adjust the `speed` parameter to mitigate this.
**Target Quality**
- How high quality is the reference voice? This grade may be impacted by audio quality, artifacts, compression, & sample rate.
- How well do the text labels match the audio? Text/audio misalignment (e.g. from hallucinations) will lower this grade.
**Training Duration**
- How much audio was seen during training? Smaller durations result in a lower overall grade.
- 10 hours <= **HH hours** < 100 hours
- 1 hour <= H hours < 10 hours
- 10 minutes <= MM minutes < 100 minutes
- 1 minute <= _M minutes_ 🤏 < 10 minutes
### American English
- `lang_code='a'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `en-us` fallback
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| **af\_heart** | 🚺❤️ | | | **A** | `0ab5709b` |
| af_alloy | 🚺 | B | MM minutes | C | `6d877149` |
| af_aoede | 🚺 | B | H hours | C+ | `c03bd1a4` |
| af_bella | 🚺🔥 | **A** | **HH hours** | **A-** | `8cb64e02` |
| af_jessica | 🚺 | C | MM minutes | D | `cdfdccb8` |
| af_kore | 🚺 | B | H hours | C+ | `8bfbc512` |
| af_nicole | 🚺🎧 | B | **HH hours** | B- | `c5561808` |
| af_nova | 🚺 | B | MM minutes | C | `e0233676` |
| af_river | 🚺 | C | MM minutes | D | `e149459b` |
| af_sarah | 🚺 | B | H hours | C+ | `49bd364e` |
| af_sky | 🚺 | B | _M minutes_ 🤏 | C- | `c799548a` |
| am_adam | 🚹 | D | H hours | F+ | `ced7e284` |
| am_echo | 🚹 | C | MM minutes | D | `8bcfdc85` |
| am_eric | 🚹 | C | MM minutes | D | `ada66f0e` |
| am_fenrir | 🚹 | B | H hours | C+ | `98e507ec` |
| am_liam | 🚹 | C | MM minutes | D | `c8255075` |
| am_michael | 🚹 | B | H hours | C+ | `9a443b79` |
| am_onyx | 🚹 | C | MM minutes | D | `e8452be1` |
| am_puck | 🚹 | B | H hours | C+ | `dd1d8973` |
| am_santa | 🚹 | C | _M minutes_ 🤏 | D- | `7f2f7582` |
### British English
- `lang_code='b'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `en-gb` fallback
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| bf_alice | 🚺 | C | MM minutes | D | `d292651b` |
| bf_emma | 🚺 | B | **HH hours** | B- | `d0a423de` |
| bf_isabella | 🚺 | B | MM minutes | C | `cdd4c370` |
| bf_lily | 🚺 | C | MM minutes | D | `6e09c2e4` |
| bm_daniel | 🚹 | C | MM minutes | D | `fc3fce4e` |
| bm_fable | 🚹 | B | MM minutes | C | `d44935f3` |
| bm_george | 🚹 | B | MM minutes | C | `f1bc8122` |
| bm_lewis | 🚹 | C | H hours | D+ | `b5204750` |
### Japanese
- `lang_code='j'` in [`misaki[ja]`](https://github.com/hexgrad/misaki)
- Total Japanese training data: H hours
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
| jf_alpha | 🚺 | B | H hours | C+ | `1bf4c9dc` | |
| jf_gongitsune | 🚺 | B | MM minutes | C | `1b171917` | [gongitsune](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__gongitsune.txt) |
| jf_nezumi | 🚺 | B | _M minutes_ 🤏 | C- | `d83f007a` | [nezuminoyomeiri](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__nezuminoyomeiri.txt) |
| jf_tebukuro | 🚺 | B | MM minutes | C | `0d691790` | [tebukurowokaini](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__tebukurowokaini.txt) |
| jm_kumo | 🚹 | B | _M minutes_ 🤏 | C- | `98340afd` | [kumonoito](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__kumonoito.txt) |
### Mandarin Chinese
- `lang_code='z'` in [`misaki[zh]`](https://github.com/hexgrad/misaki)
- Total Mandarin Chinese training data: H hours
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| zf_xiaobei | 🚺 | C | MM minutes | D | `9b76be63` |
| zf_xiaoni | 🚺 | C | MM minutes | D | `95b49f16` |
| zf_xiaoxiao | 🚺 | C | MM minutes | D | `cfaf6f2d` |
| zf_xiaoyi | 🚺 | C | MM minutes | D | `b5235dba` |
| zm_yunjian | 🚹 | C | MM minutes | D | `76cbf8ba` |
| zm_yunxi | 🚹 | C | MM minutes | D | `dbe6e1ce` |
| zm_yunxia | 🚹 | C | MM minutes | D | `bb2b03b0` |
| zm_yunyang | 🚹 | C | MM minutes | D | `5238ac22` |
### Spanish
- `lang_code='e'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `es`
| Name | Traits | SHA256 |
| ---- | ------ | ------ |
| ef_dora | 🚺 | `d9d69b0f` |
| em_alex | 🚹 | `5eac53f7` |
| em_santa | 🚹 | `aa8620cb` |
### French
- `lang_code='f'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `fr-fr`
- Total French training data: <11 hours
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
| ff_siwis | 🚺 | B | <11 hours | B- | `8073bf2d` | [SIWIS](https://datashare.ed.ac.uk/handle/10283/2353) |
### Hindi
- `lang_code='h'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `hi`
- Total Hindi training data: H hours
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| hf_alpha | 🚺 | B | MM minutes | C | `06906fe0` |
| hf_beta | 🚺 | B | MM minutes | C | `63c0a1a6` |
| hm_omega | 🚹 | B | MM minutes | C | `b55f02a8` |
| hm_psi | 🚹 | B | MM minutes | C | `2f0f055c` |
### Italian
- `lang_code='i'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `it`
- Total Italian training data: H hours
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
| if_sara | 🚺 | B | MM minutes | C | `6c0b253b` |
| im_nicola | 🚹 | B | MM minutes | C | `234ed066` |
### Brazilian Portuguese
- `lang_code='p'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
- espeak-ng `pt-br`
| Name | Traits | SHA256 |
| ---- | ------ | ------ |
| pf_dora | 🚺 | `07e4ff98` |
| pm_alex | 🚹 | `cf0ba8c5` |
| pm_santa | 🚹 | `d4210316` |
|