File size: 2,599 Bytes
60b0815
 
 
 
 
 
 
 
46af0c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72a255a
46af0c9
72a255a
 
2fd0dff
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: llama2
datasets:
- glaiveai/glaive-code-assistant
language:
- en
tags:
- code
---

# Glaive-coder-7b

Glaive-coder-7b is a 7B parameter code model trained on a dataset of ~140k programming related problems and solutions generated from Glaive’s synthetic data generation platform.

The model is fine-tuned on the CodeLlama-7b model.

## Usage:

The model is trained to act as a code assistant, and can do both single instruction following and multi-turn conversations.
It follows the same prompt format as CodeLlama-7b-Instruct-
```
<s>[INST]
<<SYS>>
{{ system_prompt }}
<</SYS>>

{{ user_msg }} [/INST] {{ model_answer }} </s>
<s>[INST] {{ user_msg }} [/INST]
```

You can run the model in the following way-

```python
from transformers import AutoModelForCausalLM , AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("glaiveai/glaive-coder-7b")
model = AutoModelForCausalLM.from_pretrained("glaiveai/glaive-coder-7b").half().cuda()

def fmt_prompt(prompt):
    return f"<s> [INST] {prompt} [/INST]"

inputs = tokenizer(fmt_prompt(prompt),return_tensors="pt").to(model.device)

outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)

print(tokenizer.decode(outputs[0],skip_special_tokens=True,clean_up_tokenization_spaces=False))
```

## Benchmarks:

The model achieves a 63.1% pass@1 on HumanEval and a 45.2% pass@1 on MBPP, however it is evident that these benchmarks are not representative of real-world usage of code models so we are launching the [Code Models Arena](https://arena.glaive.ai/) to let users vote on model outputs so we can have a better understanding of user preference on code models and come up with new and better benchmarks. We plan to release the Arena results as soon as we have a sufficient amount of data.

Join the Glaive [discord](https://discord.gg/fjQ4uf3yWD) for improvement suggestions, bug-reports and collaborating on more open-source projects.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_glaiveai__glaive-coder-7b)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 36.42   |
| ARC (25-shot)         | 42.66          |
| HellaSwag (10-shot)   | 64.69    |
| MMLU (5-shot)         | 37.15         |
| TruthfulQA (0-shot)   | 39.88   |
| Winogrande (5-shot)   | 59.75   |
| GSM8K (5-shot)        | 5.23        |
| DROP (3-shot)         | 5.55         |