francescosabbarese commited on
Commit
5ec3be3
·
verified ·
1 Parent(s): 8fa329f

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. replay.mp4 +2 -2
  3. sf_log.txt +163 -0
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.48 +/- 3.89
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 12.07 +/- 5.05
19
  name: mean_reward
20
  verified: false
21
  ---
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:66918a96bf10ef1a90dc023f3fcb5d2d0ad2abfa462ef5d8eaf19e9366e50ba7
3
- size 17872303
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e456ca48bb77120e2b62dbaf595592bcdf49923bf67d6d09f221ef8e3e3c73c9
3
+ size 23543324
sf_log.txt CHANGED
@@ -1925,3 +1925,166 @@ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has be
1925
  [2025-02-27 20:50:59,231][00031] Avg episode rewards: #0: 21.577, true rewards: #0: 9.477
1926
  [2025-02-27 20:50:59,232][00031] Avg episode reward: 21.577, avg true_objective: 9.477
1927
  [2025-02-27 20:51:28,387][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925
  [2025-02-27 20:50:59,231][00031] Avg episode rewards: #0: 21.577, true rewards: #0: 9.477
1926
  [2025-02-27 20:50:59,232][00031] Avg episode reward: 21.577, avg true_objective: 9.477
1927
  [2025-02-27 20:51:28,387][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
1928
+ [2025-02-27 20:51:33,964][00031] The model has been pushed to https://huggingface.co/francescosabbarese/rl_course_vizdoom_health_gathering_supreme
1929
+ [2025-02-27 20:51:33,987][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
1930
+ [2025-02-27 20:51:33,988][00031] Overriding arg 'num_workers' with value 1 passed from command line
1931
+ [2025-02-27 20:51:33,988][00031] Adding new argument 'no_render'=True that is not in the saved config file!
1932
+ [2025-02-27 20:51:33,989][00031] Adding new argument 'save_video'=True that is not in the saved config file!
1933
+ [2025-02-27 20:51:33,991][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1934
+ [2025-02-27 20:51:33,992][00031] Adding new argument 'video_name'=None that is not in the saved config file!
1935
+ [2025-02-27 20:51:33,992][00031] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1936
+ [2025-02-27 20:51:33,994][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1937
+ [2025-02-27 20:51:33,994][00031] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1938
+ [2025-02-27 20:51:33,995][00031] Adding new argument 'hf_repository'='francescosabbarese/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1939
+ [2025-02-27 20:51:33,996][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
1940
+ [2025-02-27 20:51:33,997][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1941
+ [2025-02-27 20:51:33,998][00031] Adding new argument 'train_script'=None that is not in the saved config file!
1942
+ [2025-02-27 20:51:34,000][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1943
+ [2025-02-27 20:51:34,000][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
1944
+ [2025-02-27 20:51:34,025][00031] RunningMeanStd input shape: (3, 72, 128)
1945
+ [2025-02-27 20:51:34,026][00031] RunningMeanStd input shape: (1,)
1946
+ [2025-02-27 20:51:34,037][00031] ConvEncoder: input_channels=3
1947
+ [2025-02-27 20:51:34,077][00031] Conv encoder output size: 512
1948
+ [2025-02-27 20:51:34,078][00031] Policy head output size: 512
1949
+ [2025-02-27 20:51:34,104][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000001292_10584064.pth...
1950
+ [2025-02-27 20:51:34,563][00031] Num frames 100...
1951
+ [2025-02-27 20:51:34,690][00031] Num frames 200...
1952
+ [2025-02-27 20:51:34,811][00031] Num frames 300...
1953
+ [2025-02-27 20:51:34,937][00031] Num frames 400...
1954
+ [2025-02-27 20:51:35,060][00031] Num frames 500...
1955
+ [2025-02-27 20:51:35,175][00031] Num frames 600...
1956
+ [2025-02-27 20:51:35,292][00031] Num frames 700...
1957
+ [2025-02-27 20:51:35,408][00031] Num frames 800...
1958
+ [2025-02-27 20:51:35,537][00031] Num frames 900...
1959
+ [2025-02-27 20:51:35,655][00031] Num frames 1000...
1960
+ [2025-02-27 20:51:35,773][00031] Num frames 1100...
1961
+ [2025-02-27 20:51:35,889][00031] Num frames 1200...
1962
+ [2025-02-27 20:51:36,009][00031] Num frames 1300...
1963
+ [2025-02-27 20:51:36,115][00031] Avg episode rewards: #0: 37.440, true rewards: #0: 13.440
1964
+ [2025-02-27 20:51:36,116][00031] Avg episode reward: 37.440, avg true_objective: 13.440
1965
+ [2025-02-27 20:51:36,184][00031] Num frames 1400...
1966
+ [2025-02-27 20:51:36,303][00031] Num frames 1500...
1967
+ [2025-02-27 20:51:36,426][00031] Num frames 1600...
1968
+ [2025-02-27 20:51:36,544][00031] Num frames 1700...
1969
+ [2025-02-27 20:51:36,662][00031] Num frames 1800...
1970
+ [2025-02-27 20:51:36,778][00031] Num frames 1900...
1971
+ [2025-02-27 20:51:36,894][00031] Num frames 2000...
1972
+ [2025-02-27 20:51:37,010][00031] Num frames 2100...
1973
+ [2025-02-27 20:51:37,125][00031] Num frames 2200...
1974
+ [2025-02-27 20:51:37,239][00031] Num frames 2300...
1975
+ [2025-02-27 20:51:37,356][00031] Num frames 2400...
1976
+ [2025-02-27 20:51:37,472][00031] Num frames 2500...
1977
+ [2025-02-27 20:51:37,599][00031] Num frames 2600...
1978
+ [2025-02-27 20:51:37,725][00031] Num frames 2700...
1979
+ [2025-02-27 20:51:37,843][00031] Num frames 2800...
1980
+ [2025-02-27 20:51:37,960][00031] Num frames 2900...
1981
+ [2025-02-27 20:51:38,085][00031] Num frames 3000...
1982
+ [2025-02-27 20:51:38,209][00031] Num frames 3100...
1983
+ [2025-02-27 20:51:38,330][00031] Num frames 3200...
1984
+ [2025-02-27 20:51:38,450][00031] Num frames 3300...
1985
+ [2025-02-27 20:51:38,560][00031] Avg episode rewards: #0: 42.225, true rewards: #0: 16.725
1986
+ [2025-02-27 20:51:38,561][00031] Avg episode reward: 42.225, avg true_objective: 16.725
1987
+ [2025-02-27 20:51:38,627][00031] Num frames 3400...
1988
+ [2025-02-27 20:51:38,746][00031] Num frames 3500...
1989
+ [2025-02-27 20:51:38,866][00031] Num frames 3600...
1990
+ [2025-02-27 20:51:38,991][00031] Num frames 3700...
1991
+ [2025-02-27 20:51:39,110][00031] Num frames 3800...
1992
+ [2025-02-27 20:51:39,227][00031] Num frames 3900...
1993
+ [2025-02-27 20:51:39,344][00031] Num frames 4000...
1994
+ [2025-02-27 20:51:39,459][00031] Num frames 4100...
1995
+ [2025-02-27 20:51:39,576][00031] Num frames 4200...
1996
+ [2025-02-27 20:51:39,695][00031] Num frames 4300...
1997
+ [2025-02-27 20:51:39,811][00031] Num frames 4400...
1998
+ [2025-02-27 20:51:39,874][00031] Avg episode rewards: #0: 37.023, true rewards: #0: 14.690
1999
+ [2025-02-27 20:51:39,875][00031] Avg episode reward: 37.023, avg true_objective: 14.690
2000
+ [2025-02-27 20:51:39,985][00031] Num frames 4500...
2001
+ [2025-02-27 20:51:40,106][00031] Num frames 4600...
2002
+ [2025-02-27 20:51:40,226][00031] Num frames 4700...
2003
+ [2025-02-27 20:51:40,341][00031] Num frames 4800...
2004
+ [2025-02-27 20:51:40,459][00031] Num frames 4900...
2005
+ [2025-02-27 20:51:40,577][00031] Num frames 5000...
2006
+ [2025-02-27 20:51:40,694][00031] Num frames 5100...
2007
+ [2025-02-27 20:51:40,812][00031] Num frames 5200...
2008
+ [2025-02-27 20:51:40,928][00031] Num frames 5300...
2009
+ [2025-02-27 20:51:41,045][00031] Num frames 5400...
2010
+ [2025-02-27 20:51:41,159][00031] Num frames 5500...
2011
+ [2025-02-27 20:51:41,278][00031] Num frames 5600...
2012
+ [2025-02-27 20:51:41,405][00031] Num frames 5700...
2013
+ [2025-02-27 20:51:41,530][00031] Num frames 5800...
2014
+ [2025-02-27 20:51:41,679][00031] Avg episode rewards: #0: 36.947, true rewards: #0: 14.697
2015
+ [2025-02-27 20:51:41,680][00031] Avg episode reward: 36.947, avg true_objective: 14.697
2016
+ [2025-02-27 20:51:41,706][00031] Num frames 5900...
2017
+ [2025-02-27 20:51:41,827][00031] Num frames 6000...
2018
+ [2025-02-27 20:51:41,942][00031] Num frames 6100...
2019
+ [2025-02-27 20:51:42,058][00031] Num frames 6200...
2020
+ [2025-02-27 20:51:42,174][00031] Num frames 6300...
2021
+ [2025-02-27 20:51:42,293][00031] Num frames 6400...
2022
+ [2025-02-27 20:51:42,417][00031] Num frames 6500...
2023
+ [2025-02-27 20:51:42,541][00031] Num frames 6600...
2024
+ [2025-02-27 20:51:42,665][00031] Num frames 6700...
2025
+ [2025-02-27 20:51:42,789][00031] Num frames 6800...
2026
+ [2025-02-27 20:51:42,914][00031] Num frames 6900...
2027
+ [2025-02-27 20:51:43,038][00031] Num frames 7000...
2028
+ [2025-02-27 20:51:43,165][00031] Num frames 7100...
2029
+ [2025-02-27 20:51:43,287][00031] Num frames 7200...
2030
+ [2025-02-27 20:51:43,402][00031] Num frames 7300...
2031
+ [2025-02-27 20:51:43,517][00031] Num frames 7400...
2032
+ [2025-02-27 20:51:43,683][00031] Avg episode rewards: #0: 38.792, true rewards: #0: 14.992
2033
+ [2025-02-27 20:51:43,684][00031] Avg episode reward: 38.792, avg true_objective: 14.992
2034
+ [2025-02-27 20:51:43,690][00031] Num frames 7500...
2035
+ [2025-02-27 20:51:43,814][00031] Num frames 7600...
2036
+ [2025-02-27 20:51:43,937][00031] Num frames 7700...
2037
+ [2025-02-27 20:51:44,060][00031] Num frames 7800...
2038
+ [2025-02-27 20:51:44,182][00031] Num frames 7900...
2039
+ [2025-02-27 20:51:44,305][00031] Num frames 8000...
2040
+ [2025-02-27 20:51:44,425][00031] Num frames 8100...
2041
+ [2025-02-27 20:51:44,525][00031] Avg episode rewards: #0: 34.560, true rewards: #0: 13.560
2042
+ [2025-02-27 20:51:44,526][00031] Avg episode reward: 34.560, avg true_objective: 13.560
2043
+ [2025-02-27 20:51:44,605][00031] Num frames 8200...
2044
+ [2025-02-27 20:51:44,721][00031] Num frames 8300...
2045
+ [2025-02-27 20:51:44,837][00031] Num frames 8400...
2046
+ [2025-02-27 20:51:44,968][00031] Num frames 8500...
2047
+ [2025-02-27 20:51:45,084][00031] Num frames 8600...
2048
+ [2025-02-27 20:51:45,208][00031] Num frames 8700...
2049
+ [2025-02-27 20:51:45,326][00031] Num frames 8800...
2050
+ [2025-02-27 20:51:45,448][00031] Num frames 8900...
2051
+ [2025-02-27 20:51:45,620][00031] Avg episode rewards: #0: 32.271, true rewards: #0: 12.843
2052
+ [2025-02-27 20:51:45,621][00031] Avg episode reward: 32.271, avg true_objective: 12.843
2053
+ [2025-02-27 20:51:45,634][00031] Num frames 9000...
2054
+ [2025-02-27 20:51:45,754][00031] Num frames 9100...
2055
+ [2025-02-27 20:51:45,869][00031] Num frames 9200...
2056
+ [2025-02-27 20:51:45,988][00031] Num frames 9300...
2057
+ [2025-02-27 20:51:46,105][00031] Num frames 9400...
2058
+ [2025-02-27 20:51:46,219][00031] Num frames 9500...
2059
+ [2025-02-27 20:51:46,339][00031] Num frames 9600...
2060
+ [2025-02-27 20:51:46,451][00031] Num frames 9700...
2061
+ [2025-02-27 20:51:46,569][00031] Num frames 9800...
2062
+ [2025-02-27 20:51:46,685][00031] Num frames 9900...
2063
+ [2025-02-27 20:51:46,804][00031] Num frames 10000...
2064
+ [2025-02-27 20:51:46,924][00031] Num frames 10100...
2065
+ [2025-02-27 20:51:47,045][00031] Num frames 10200...
2066
+ [2025-02-27 20:51:47,164][00031] Num frames 10300...
2067
+ [2025-02-27 20:51:47,280][00031] Num frames 10400...
2068
+ [2025-02-27 20:51:47,406][00031] Num frames 10500...
2069
+ [2025-02-27 20:51:47,524][00031] Num frames 10600...
2070
+ [2025-02-27 20:51:47,646][00031] Num frames 10700...
2071
+ [2025-02-27 20:51:47,762][00031] Num frames 10800...
2072
+ [2025-02-27 20:51:47,899][00031] Avg episode rewards: #0: 34.712, true rewards: #0: 13.587
2073
+ [2025-02-27 20:51:47,900][00031] Avg episode reward: 34.712, avg true_objective: 13.587
2074
+ [2025-02-27 20:51:47,936][00031] Num frames 10900...
2075
+ [2025-02-27 20:51:48,061][00031] Num frames 11000...
2076
+ [2025-02-27 20:51:48,180][00031] Num frames 11100...
2077
+ [2025-02-27 20:51:48,296][00031] Num frames 11200...
2078
+ [2025-02-27 20:51:48,413][00031] Num frames 11300...
2079
+ [2025-02-27 20:51:48,532][00031] Num frames 11400...
2080
+ [2025-02-27 20:51:48,655][00031] Avg episode rewards: #0: 32.286, true rewards: #0: 12.731
2081
+ [2025-02-27 20:51:48,656][00031] Avg episode reward: 32.286, avg true_objective: 12.731
2082
+ [2025-02-27 20:51:48,707][00031] Num frames 11500...
2083
+ [2025-02-27 20:51:48,826][00031] Num frames 11600...
2084
+ [2025-02-27 20:51:48,946][00031] Num frames 11700...
2085
+ [2025-02-27 20:51:49,068][00031] Num frames 11800...
2086
+ [2025-02-27 20:51:49,196][00031] Num frames 11900...
2087
+ [2025-02-27 20:51:49,323][00031] Num frames 12000...
2088
+ [2025-02-27 20:51:49,459][00031] Avg episode rewards: #0: 30.366, true rewards: #0: 12.066
2089
+ [2025-02-27 20:51:49,460][00031] Avg episode reward: 30.366, avg true_objective: 12.066
2090
+ [2025-02-27 20:52:26,202][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!