Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1740595416.97a490883127 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000842_3448832_reward_6.318.pth +3 -0
- checkpoint_p0/checkpoint_000000783_3207168.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +147 -0
- replay.mp4 +3 -0
- sf_log.txt +730 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1740595416.97a490883127
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77a6e999c44e18e49908bbd7ff54ce331cdb20961d3567344da5891b64cf977b
|
3 |
+
size 391953
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 4.45 +/- 1.06
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r francescosabbarese/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the HF中国镜像站 Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000842_3448832_reward_6.318.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13b517c2d8d63caf58336370ba62486008cff31d2da4940094e87d76d682de93
|
3 |
+
size 21523663
|
checkpoint_p0/checkpoint_000000783_3207168.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d95f6e5135e25b1d21be791d66aaf0c5af7d07d9d612a09438ce29bc63c0b08
|
3 |
+
size 21524161
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f500e5df5fc8db1c8f2a61d874ed997c8a7e6fd79a167f9a13c4c1e5a236c7b
|
3 |
+
size 21524161
|
config.json
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/kaggle/working/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 8,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.98,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 128,
|
88 |
+
"rnn_type": "lstm",
|
89 |
+
"rnn_num_layers": 2,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "xavier_uniform",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=8 --train_for_env_steps=4000000 --gamma=0.98 --rnn_type=lstm --policy_initialization=xavier_uniform --rnn_size=128 --rnn_num_layers=2",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 8,
|
138 |
+
"gamma": 0.98,
|
139 |
+
"train_for_env_steps": 4000000,
|
140 |
+
"rnn_size": 128,
|
141 |
+
"rnn_type": "lstm",
|
142 |
+
"rnn_num_layers": 2,
|
143 |
+
"policy_initialization": "xavier_uniform"
|
144 |
+
},
|
145 |
+
"git_hash": "unknown",
|
146 |
+
"git_repo_name": "not a git repository"
|
147 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d28f72e1c38891a14420c3e43904ef6150e8513e0ddfb21e060f667ec4c04379
|
3 |
+
size 6339474
|
sf_log.txt
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2025-02-26 18:43:41,668][00031] Saving configuration to /kaggle/working/train_dir/default_experiment/config.json...
|
2 |
+
[2025-02-26 18:43:41,670][00031] Rollout worker 0 uses device cpu
|
3 |
+
[2025-02-26 18:43:41,671][00031] Rollout worker 1 uses device cpu
|
4 |
+
[2025-02-26 18:43:41,672][00031] Rollout worker 2 uses device cpu
|
5 |
+
[2025-02-26 18:43:41,673][00031] Rollout worker 3 uses device cpu
|
6 |
+
[2025-02-26 18:43:41,674][00031] Rollout worker 4 uses device cpu
|
7 |
+
[2025-02-26 18:43:41,675][00031] Rollout worker 5 uses device cpu
|
8 |
+
[2025-02-26 18:43:41,676][00031] Rollout worker 6 uses device cpu
|
9 |
+
[2025-02-26 18:43:41,677][00031] Rollout worker 7 uses device cpu
|
10 |
+
[2025-02-26 18:43:41,871][00031] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2025-02-26 18:43:41,872][00031] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2025-02-26 18:43:41,915][00031] Starting all processes...
|
13 |
+
[2025-02-26 18:43:41,915][00031] Starting process learner_proc0
|
14 |
+
[2025-02-26 18:43:42,010][00031] Starting all processes...
|
15 |
+
[2025-02-26 18:43:42,018][00031] Starting process inference_proc0-0
|
16 |
+
[2025-02-26 18:43:42,019][00031] Starting process rollout_proc0
|
17 |
+
[2025-02-26 18:43:42,021][00031] Starting process rollout_proc1
|
18 |
+
[2025-02-26 18:43:42,021][00031] Starting process rollout_proc2
|
19 |
+
[2025-02-26 18:43:42,025][00031] Starting process rollout_proc3
|
20 |
+
[2025-02-26 18:43:42,025][00031] Starting process rollout_proc4
|
21 |
+
[2025-02-26 18:43:42,026][00031] Starting process rollout_proc5
|
22 |
+
[2025-02-26 18:43:42,026][00031] Starting process rollout_proc6
|
23 |
+
[2025-02-26 18:43:42,028][00031] Starting process rollout_proc7
|
24 |
+
[2025-02-26 18:43:49,327][01171] Worker 6 uses CPU cores [2]
|
25 |
+
[2025-02-26 18:43:50,115][01170] Worker 5 uses CPU cores [1]
|
26 |
+
[2025-02-26 18:43:50,116][01164] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
27 |
+
[2025-02-26 18:43:50,117][01164] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
28 |
+
[2025-02-26 18:43:50,175][01164] Num visible devices: 1
|
29 |
+
[2025-02-26 18:43:50,334][01172] Worker 7 uses CPU cores [3]
|
30 |
+
[2025-02-26 18:43:50,392][01151] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
31 |
+
[2025-02-26 18:43:50,393][01151] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
32 |
+
[2025-02-26 18:43:50,422][01151] Num visible devices: 1
|
33 |
+
[2025-02-26 18:43:50,438][01151] Starting seed is not provided
|
34 |
+
[2025-02-26 18:43:50,439][01151] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
35 |
+
[2025-02-26 18:43:50,439][01151] Initializing actor-critic model on device cuda:0
|
36 |
+
[2025-02-26 18:43:50,440][01151] RunningMeanStd input shape: (3, 72, 128)
|
37 |
+
[2025-02-26 18:43:50,441][01168] Worker 3 uses CPU cores [3]
|
38 |
+
[2025-02-26 18:43:50,451][01151] RunningMeanStd input shape: (1,)
|
39 |
+
[2025-02-26 18:43:50,472][01165] Worker 0 uses CPU cores [0]
|
40 |
+
[2025-02-26 18:43:50,491][01151] ConvEncoder: input_channels=3
|
41 |
+
[2025-02-26 18:43:50,505][01166] Worker 1 uses CPU cores [1]
|
42 |
+
[2025-02-26 18:43:50,547][01167] Worker 2 uses CPU cores [2]
|
43 |
+
[2025-02-26 18:43:50,570][01169] Worker 4 uses CPU cores [0]
|
44 |
+
[2025-02-26 18:43:50,735][01151] Conv encoder output size: 512
|
45 |
+
[2025-02-26 18:43:50,735][01151] Policy head output size: 512
|
46 |
+
[2025-02-26 18:43:50,740][01151] Created Actor Critic model with architecture:
|
47 |
+
[2025-02-26 18:43:50,740][01151] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): LSTM(512, 128, num_layers=2)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=128, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=128, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2025-02-26 18:43:51,065][01151] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2025-02-26 18:43:52,838][01151] No checkpoints found
|
90 |
+
[2025-02-26 18:43:52,838][01151] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2025-02-26 18:43:52,840][01151] Initialized policy 0 weights for model version 0
|
92 |
+
[2025-02-26 18:43:52,846][01151] LearnerWorker_p0 finished initialization!
|
93 |
+
[2025-02-26 18:43:52,846][01151] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2025-02-26 18:43:52,935][01164] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2025-02-26 18:43:52,936][01164] RunningMeanStd input shape: (1,)
|
96 |
+
[2025-02-26 18:43:52,948][01164] ConvEncoder: input_channels=3
|
97 |
+
[2025-02-26 18:43:53,087][01164] Conv encoder output size: 512
|
98 |
+
[2025-02-26 18:43:53,087][01164] Policy head output size: 512
|
99 |
+
[2025-02-26 18:43:53,131][00031] Inference worker 0-0 is ready!
|
100 |
+
[2025-02-26 18:43:53,132][00031] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2025-02-26 18:43:53,246][01165] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2025-02-26 18:43:53,251][01171] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2025-02-26 18:43:53,250][01172] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2025-02-26 18:43:53,253][01169] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2025-02-26 18:43:53,255][01166] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2025-02-26 18:43:53,254][01168] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2025-02-26 18:43:53,253][01167] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2025-02-26 18:43:53,256][01170] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2025-02-26 18:43:54,060][01169] Decorrelating experience for 0 frames...
|
110 |
+
[2025-02-26 18:43:54,060][01168] Decorrelating experience for 0 frames...
|
111 |
+
[2025-02-26 18:43:54,060][01166] Decorrelating experience for 0 frames...
|
112 |
+
[2025-02-26 18:43:54,417][01171] Decorrelating experience for 0 frames...
|
113 |
+
[2025-02-26 18:43:54,420][01167] Decorrelating experience for 0 frames...
|
114 |
+
[2025-02-26 18:43:54,499][01168] Decorrelating experience for 32 frames...
|
115 |
+
[2025-02-26 18:43:54,504][01170] Decorrelating experience for 0 frames...
|
116 |
+
[2025-02-26 18:43:54,860][01167] Decorrelating experience for 32 frames...
|
117 |
+
[2025-02-26 18:43:54,938][01169] Decorrelating experience for 32 frames...
|
118 |
+
[2025-02-26 18:43:54,942][01165] Decorrelating experience for 0 frames...
|
119 |
+
[2025-02-26 18:43:54,948][01170] Decorrelating experience for 32 frames...
|
120 |
+
[2025-02-26 18:43:54,962][01172] Decorrelating experience for 0 frames...
|
121 |
+
[2025-02-26 18:43:55,345][01167] Decorrelating experience for 64 frames...
|
122 |
+
[2025-02-26 18:43:55,437][01165] Decorrelating experience for 32 frames...
|
123 |
+
[2025-02-26 18:43:55,438][01166] Decorrelating experience for 32 frames...
|
124 |
+
[2025-02-26 18:43:55,874][01165] Decorrelating experience for 64 frames...
|
125 |
+
[2025-02-26 18:43:55,875][01168] Decorrelating experience for 64 frames...
|
126 |
+
[2025-02-26 18:43:55,877][01172] Decorrelating experience for 32 frames...
|
127 |
+
[2025-02-26 18:43:56,306][01170] Decorrelating experience for 64 frames...
|
128 |
+
[2025-02-26 18:43:56,345][01166] Decorrelating experience for 64 frames...
|
129 |
+
[2025-02-26 18:43:56,415][01171] Decorrelating experience for 32 frames...
|
130 |
+
[2025-02-26 18:43:56,444][01165] Decorrelating experience for 96 frames...
|
131 |
+
[2025-02-26 18:43:56,887][01166] Decorrelating experience for 96 frames...
|
132 |
+
[2025-02-26 18:43:56,899][00031] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
133 |
+
[2025-02-26 18:43:56,923][01172] Decorrelating experience for 64 frames...
|
134 |
+
[2025-02-26 18:43:57,021][01171] Decorrelating experience for 64 frames...
|
135 |
+
[2025-02-26 18:43:57,350][01169] Decorrelating experience for 64 frames...
|
136 |
+
[2025-02-26 18:43:57,441][01168] Decorrelating experience for 96 frames...
|
137 |
+
[2025-02-26 18:43:57,525][01171] Decorrelating experience for 96 frames...
|
138 |
+
[2025-02-26 18:43:58,036][01165] Decorrelating experience for 128 frames...
|
139 |
+
[2025-02-26 18:43:58,167][01168] Decorrelating experience for 128 frames...
|
140 |
+
[2025-02-26 18:43:58,189][01171] Decorrelating experience for 128 frames...
|
141 |
+
[2025-02-26 18:43:58,385][01170] Decorrelating experience for 96 frames...
|
142 |
+
[2025-02-26 18:43:58,438][01166] Decorrelating experience for 128 frames...
|
143 |
+
[2025-02-26 18:43:58,656][01171] Decorrelating experience for 160 frames...
|
144 |
+
[2025-02-26 18:43:58,710][01168] Decorrelating experience for 160 frames...
|
145 |
+
[2025-02-26 18:43:58,947][01167] Decorrelating experience for 96 frames...
|
146 |
+
[2025-02-26 18:43:59,292][01168] Decorrelating experience for 192 frames...
|
147 |
+
[2025-02-26 18:43:59,397][01171] Decorrelating experience for 192 frames...
|
148 |
+
[2025-02-26 18:43:59,493][01166] Decorrelating experience for 160 frames...
|
149 |
+
[2025-02-26 18:43:59,696][01167] Decorrelating experience for 128 frames...
|
150 |
+
[2025-02-26 18:43:59,816][01170] Decorrelating experience for 128 frames...
|
151 |
+
[2025-02-26 18:43:59,905][01168] Decorrelating experience for 224 frames...
|
152 |
+
[2025-02-26 18:44:00,174][01169] Decorrelating experience for 96 frames...
|
153 |
+
[2025-02-26 18:44:00,349][01166] Decorrelating experience for 192 frames...
|
154 |
+
[2025-02-26 18:44:00,365][01171] Decorrelating experience for 224 frames...
|
155 |
+
[2025-02-26 18:44:00,770][01172] Decorrelating experience for 96 frames...
|
156 |
+
[2025-02-26 18:44:00,820][01169] Decorrelating experience for 128 frames...
|
157 |
+
[2025-02-26 18:44:01,146][01170] Decorrelating experience for 160 frames...
|
158 |
+
[2025-02-26 18:44:01,288][01169] Decorrelating experience for 160 frames...
|
159 |
+
[2025-02-26 18:44:01,493][01172] Decorrelating experience for 128 frames...
|
160 |
+
[2025-02-26 18:44:01,692][01166] Decorrelating experience for 224 frames...
|
161 |
+
[2025-02-26 18:44:01,860][00031] Heartbeat connected on Batcher_0
|
162 |
+
[2025-02-26 18:44:01,865][00031] Heartbeat connected on LearnerWorker_p0
|
163 |
+
[2025-02-26 18:44:01,891][00031] Heartbeat connected on InferenceWorker_p0-w0
|
164 |
+
[2025-02-26 18:44:01,899][00031] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
165 |
+
[2025-02-26 18:44:01,901][00031] Heartbeat connected on RolloutWorker_w3
|
166 |
+
[2025-02-26 18:44:01,924][00031] Heartbeat connected on RolloutWorker_w6
|
167 |
+
[2025-02-26 18:44:02,016][01167] Decorrelating experience for 160 frames...
|
168 |
+
[2025-02-26 18:44:02,134][00031] Heartbeat connected on RolloutWorker_w1
|
169 |
+
[2025-02-26 18:44:02,221][01169] Decorrelating experience for 192 frames...
|
170 |
+
[2025-02-26 18:44:02,340][01172] Decorrelating experience for 160 frames...
|
171 |
+
[2025-02-26 18:44:02,344][01170] Decorrelating experience for 192 frames...
|
172 |
+
[2025-02-26 18:44:02,742][01165] Decorrelating experience for 160 frames...
|
173 |
+
[2025-02-26 18:44:03,560][01167] Decorrelating experience for 192 frames...
|
174 |
+
[2025-02-26 18:44:03,620][01169] Decorrelating experience for 224 frames...
|
175 |
+
[2025-02-26 18:44:03,931][00031] Heartbeat connected on RolloutWorker_w4
|
176 |
+
[2025-02-26 18:44:03,946][01170] Decorrelating experience for 224 frames...
|
177 |
+
[2025-02-26 18:44:04,421][00031] Heartbeat connected on RolloutWorker_w5
|
178 |
+
[2025-02-26 18:44:04,422][01151] Signal inference workers to stop experience collection...
|
179 |
+
[2025-02-26 18:44:04,428][01164] InferenceWorker_p0-w0: stopping experience collection
|
180 |
+
[2025-02-26 18:44:04,608][01172] Decorrelating experience for 192 frames...
|
181 |
+
[2025-02-26 18:44:04,681][01167] Decorrelating experience for 224 frames...
|
182 |
+
[2025-02-26 18:44:04,943][00031] Heartbeat connected on RolloutWorker_w2
|
183 |
+
[2025-02-26 18:44:05,039][01165] Decorrelating experience for 192 frames...
|
184 |
+
[2025-02-26 18:44:05,180][01172] Decorrelating experience for 224 frames...
|
185 |
+
[2025-02-26 18:44:05,366][00031] Heartbeat connected on RolloutWorker_w7
|
186 |
+
[2025-02-26 18:44:05,541][01165] Decorrelating experience for 224 frames...
|
187 |
+
[2025-02-26 18:44:05,696][00031] Heartbeat connected on RolloutWorker_w0
|
188 |
+
[2025-02-26 18:44:06,696][01151] Signal inference workers to resume experience collection...
|
189 |
+
[2025-02-26 18:44:06,697][01164] InferenceWorker_p0-w0: resuming experience collection
|
190 |
+
[2025-02-26 18:44:06,904][00031] Fps is (10 sec: 409.5, 60 sec: 409.5, 300 sec: 409.5). Total num frames: 4096. Throughput: 0: 269.1. Samples: 2692. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
191 |
+
[2025-02-26 18:44:06,908][00031] Avg episode reward: [(0, '2.113')]
|
192 |
+
[2025-02-26 18:44:11,009][01164] Updated weights for policy 0, policy_version 10 (0.0164)
|
193 |
+
[2025-02-26 18:44:11,899][00031] Fps is (10 sec: 4915.2, 60 sec: 3276.8, 300 sec: 3276.8). Total num frames: 49152. Throughput: 0: 765.6. Samples: 11484. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
|
194 |
+
[2025-02-26 18:44:11,901][00031] Avg episode reward: [(0, '3.919')]
|
195 |
+
[2025-02-26 18:44:15,535][01164] Updated weights for policy 0, policy_version 20 (0.0015)
|
196 |
+
[2025-02-26 18:44:16,899][00031] Fps is (10 sec: 9014.5, 60 sec: 4710.4, 300 sec: 4710.4). Total num frames: 94208. Throughput: 0: 918.8. Samples: 18376. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
197 |
+
[2025-02-26 18:44:16,901][00031] Avg episode reward: [(0, '4.471')]
|
198 |
+
[2025-02-26 18:44:19,548][01164] Updated weights for policy 0, policy_version 30 (0.0018)
|
199 |
+
[2025-02-26 18:44:21,899][00031] Fps is (10 sec: 9420.8, 60 sec: 5734.4, 300 sec: 5734.4). Total num frames: 143360. Throughput: 0: 1338.6. Samples: 33464. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
200 |
+
[2025-02-26 18:44:21,901][00031] Avg episode reward: [(0, '4.376')]
|
201 |
+
[2025-02-26 18:44:21,937][01151] Saving new best policy, reward=4.376!
|
202 |
+
[2025-02-26 18:44:23,652][01164] Updated weights for policy 0, policy_version 40 (0.0018)
|
203 |
+
[2025-02-26 18:44:26,899][00031] Fps is (10 sec: 10240.1, 60 sec: 6553.6, 300 sec: 6553.6). Total num frames: 196608. Throughput: 0: 1610.7. Samples: 48320. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
204 |
+
[2025-02-26 18:44:26,901][00031] Avg episode reward: [(0, '4.452')]
|
205 |
+
[2025-02-26 18:44:26,908][01151] Saving new best policy, reward=4.452!
|
206 |
+
[2025-02-26 18:44:27,872][01164] Updated weights for policy 0, policy_version 50 (0.0021)
|
207 |
+
[2025-02-26 18:44:31,900][00031] Fps is (10 sec: 9420.6, 60 sec: 6787.6, 300 sec: 6787.6). Total num frames: 237568. Throughput: 0: 1571.5. Samples: 55004. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
208 |
+
[2025-02-26 18:44:31,901][00031] Avg episode reward: [(0, '4.524')]
|
209 |
+
[2025-02-26 18:44:31,902][01151] Saving new best policy, reward=4.524!
|
210 |
+
[2025-02-26 18:44:32,593][01164] Updated weights for policy 0, policy_version 60 (0.0017)
|
211 |
+
[2025-02-26 18:44:36,608][01164] Updated weights for policy 0, policy_version 70 (0.0015)
|
212 |
+
[2025-02-26 18:44:36,900][00031] Fps is (10 sec: 9010.7, 60 sec: 7167.9, 300 sec: 7167.9). Total num frames: 286720. Throughput: 0: 1728.8. Samples: 69152. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
213 |
+
[2025-02-26 18:44:36,902][00031] Avg episode reward: [(0, '4.481')]
|
214 |
+
[2025-02-26 18:44:40,641][01164] Updated weights for policy 0, policy_version 80 (0.0021)
|
215 |
+
[2025-02-26 18:44:41,899][00031] Fps is (10 sec: 10240.2, 60 sec: 7554.9, 300 sec: 7554.9). Total num frames: 339968. Throughput: 0: 1873.6. Samples: 84312. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
216 |
+
[2025-02-26 18:44:41,901][00031] Avg episode reward: [(0, '4.257')]
|
217 |
+
[2025-02-26 18:44:44,708][01164] Updated weights for policy 0, policy_version 90 (0.0016)
|
218 |
+
[2025-02-26 18:44:46,899][00031] Fps is (10 sec: 10240.7, 60 sec: 7782.4, 300 sec: 7782.4). Total num frames: 389120. Throughput: 0: 2039.6. Samples: 91784. Policy #0 lag: (min: 0.0, avg: 0.9, max: 3.0)
|
219 |
+
[2025-02-26 18:44:46,901][00031] Avg episode reward: [(0, '4.270')]
|
220 |
+
[2025-02-26 18:44:48,828][01164] Updated weights for policy 0, policy_version 100 (0.0018)
|
221 |
+
[2025-02-26 18:44:51,899][00031] Fps is (10 sec: 9830.3, 60 sec: 7968.6, 300 sec: 7968.6). Total num frames: 438272. Throughput: 0: 2316.8. Samples: 106940. Policy #0 lag: (min: 0.0, avg: 1.5, max: 4.0)
|
222 |
+
[2025-02-26 18:44:51,902][00031] Avg episode reward: [(0, '4.383')]
|
223 |
+
[2025-02-26 18:44:52,770][01164] Updated weights for policy 0, policy_version 110 (0.0015)
|
224 |
+
[2025-02-26 18:44:56,899][00031] Fps is (10 sec: 9830.3, 60 sec: 8123.7, 300 sec: 8123.7). Total num frames: 487424. Throughput: 0: 2454.8. Samples: 121952. Policy #0 lag: (min: 0.0, avg: 1.3, max: 4.0)
|
225 |
+
[2025-02-26 18:44:56,901][00031] Avg episode reward: [(0, '4.417')]
|
226 |
+
[2025-02-26 18:44:57,108][01164] Updated weights for policy 0, policy_version 120 (0.0016)
|
227 |
+
[2025-02-26 18:45:01,103][01164] Updated weights for policy 0, policy_version 130 (0.0015)
|
228 |
+
[2025-02-26 18:45:01,900][00031] Fps is (10 sec: 9829.4, 60 sec: 8942.8, 300 sec: 8254.9). Total num frames: 536576. Throughput: 0: 2469.1. Samples: 129488. Policy #0 lag: (min: 0.0, avg: 1.2, max: 4.0)
|
229 |
+
[2025-02-26 18:45:01,904][00031] Avg episode reward: [(0, '4.708')]
|
230 |
+
[2025-02-26 18:45:01,906][01151] Saving new best policy, reward=4.708!
|
231 |
+
[2025-02-26 18:45:05,791][01164] Updated weights for policy 0, policy_version 140 (0.0017)
|
232 |
+
[2025-02-26 18:45:06,899][00031] Fps is (10 sec: 9830.5, 60 sec: 9694.5, 300 sec: 8367.6). Total num frames: 585728. Throughput: 0: 2431.6. Samples: 142888. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
233 |
+
[2025-02-26 18:45:06,901][00031] Avg episode reward: [(0, '4.626')]
|
234 |
+
[2025-02-26 18:45:09,980][01164] Updated weights for policy 0, policy_version 150 (0.0019)
|
235 |
+
[2025-02-26 18:45:11,899][00031] Fps is (10 sec: 9421.8, 60 sec: 9693.9, 300 sec: 8410.5). Total num frames: 630784. Throughput: 0: 2432.3. Samples: 157772. Policy #0 lag: (min: 0.0, avg: 1.1, max: 2.0)
|
236 |
+
[2025-02-26 18:45:11,901][00031] Avg episode reward: [(0, '4.413')]
|
237 |
+
[2025-02-26 18:45:14,028][01164] Updated weights for policy 0, policy_version 160 (0.0017)
|
238 |
+
[2025-02-26 18:45:16,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9830.4, 300 sec: 8550.4). Total num frames: 684032. Throughput: 0: 2447.2. Samples: 165128. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
239 |
+
[2025-02-26 18:45:16,901][00031] Avg episode reward: [(0, '4.488')]
|
240 |
+
[2025-02-26 18:45:18,162][01164] Updated weights for policy 0, policy_version 170 (0.0019)
|
241 |
+
[2025-02-26 18:45:21,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9830.4, 300 sec: 8625.7). Total num frames: 733184. Throughput: 0: 2469.4. Samples: 180272. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
|
242 |
+
[2025-02-26 18:45:21,901][00031] Avg episode reward: [(0, '4.576')]
|
243 |
+
[2025-02-26 18:45:22,088][01164] Updated weights for policy 0, policy_version 180 (0.0016)
|
244 |
+
[2025-02-26 18:45:26,243][01164] Updated weights for policy 0, policy_version 190 (0.0018)
|
245 |
+
[2025-02-26 18:45:26,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9762.1, 300 sec: 8692.6). Total num frames: 782336. Throughput: 0: 2467.1. Samples: 195332. Policy #0 lag: (min: 0.0, avg: 0.8, max: 3.0)
|
246 |
+
[2025-02-26 18:45:26,901][00031] Avg episode reward: [(0, '4.477')]
|
247 |
+
[2025-02-26 18:45:30,247][01164] Updated weights for policy 0, policy_version 200 (0.0021)
|
248 |
+
[2025-02-26 18:45:31,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9967.0, 300 sec: 8795.6). Total num frames: 835584. Throughput: 0: 2470.3. Samples: 202948. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
249 |
+
[2025-02-26 18:45:31,901][00031] Avg episode reward: [(0, '4.327')]
|
250 |
+
[2025-02-26 18:45:34,780][01164] Updated weights for policy 0, policy_version 210 (0.0020)
|
251 |
+
[2025-02-26 18:45:36,900][00031] Fps is (10 sec: 9420.3, 60 sec: 9830.4, 300 sec: 8765.4). Total num frames: 876544. Throughput: 0: 2438.5. Samples: 216672. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
252 |
+
[2025-02-26 18:45:36,902][00031] Avg episode reward: [(0, '4.658')]
|
253 |
+
[2025-02-26 18:45:36,909][01151] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000214_876544.pth...
|
254 |
+
[2025-02-26 18:45:39,200][01164] Updated weights for policy 0, policy_version 220 (0.0021)
|
255 |
+
[2025-02-26 18:45:41,899][00031] Fps is (10 sec: 9011.2, 60 sec: 9762.1, 300 sec: 8816.2). Total num frames: 925696. Throughput: 0: 2422.8. Samples: 230980. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
256 |
+
[2025-02-26 18:45:41,904][00031] Avg episode reward: [(0, '4.397')]
|
257 |
+
[2025-02-26 18:45:43,391][01164] Updated weights for policy 0, policy_version 230 (0.0016)
|
258 |
+
[2025-02-26 18:45:46,899][00031] Fps is (10 sec: 9830.9, 60 sec: 9762.1, 300 sec: 8862.3). Total num frames: 974848. Throughput: 0: 2415.9. Samples: 238200. Policy #0 lag: (min: 0.0, avg: 0.9, max: 3.0)
|
259 |
+
[2025-02-26 18:45:46,902][00031] Avg episode reward: [(0, '4.708')]
|
260 |
+
[2025-02-26 18:45:47,705][01164] Updated weights for policy 0, policy_version 240 (0.0018)
|
261 |
+
[2025-02-26 18:45:51,715][01164] Updated weights for policy 0, policy_version 250 (0.0018)
|
262 |
+
[2025-02-26 18:45:51,899][00031] Fps is (10 sec: 9830.3, 60 sec: 9762.1, 300 sec: 8904.4). Total num frames: 1024000. Throughput: 0: 2446.2. Samples: 252968. Policy #0 lag: (min: 0.0, avg: 1.4, max: 2.0)
|
263 |
+
[2025-02-26 18:45:51,903][00031] Avg episode reward: [(0, '4.491')]
|
264 |
+
[2025-02-26 18:45:55,982][01164] Updated weights for policy 0, policy_version 260 (0.0018)
|
265 |
+
[2025-02-26 18:45:56,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9762.1, 300 sec: 8942.9). Total num frames: 1073152. Throughput: 0: 2445.4. Samples: 267816. Policy #0 lag: (min: 0.0, avg: 0.9, max: 3.0)
|
266 |
+
[2025-02-26 18:45:56,901][00031] Avg episode reward: [(0, '4.508')]
|
267 |
+
[2025-02-26 18:46:00,050][01164] Updated weights for policy 0, policy_version 270 (0.0017)
|
268 |
+
[2025-02-26 18:46:01,900][00031] Fps is (10 sec: 9830.1, 60 sec: 9762.2, 300 sec: 8978.4). Total num frames: 1122304. Throughput: 0: 2449.8. Samples: 275368. Policy #0 lag: (min: 0.0, avg: 1.2, max: 4.0)
|
269 |
+
[2025-02-26 18:46:01,902][00031] Avg episode reward: [(0, '4.604')]
|
270 |
+
[2025-02-26 18:46:04,134][01164] Updated weights for policy 0, policy_version 280 (0.0016)
|
271 |
+
[2025-02-26 18:46:06,899][00031] Fps is (10 sec: 9830.5, 60 sec: 9762.1, 300 sec: 9011.2). Total num frames: 1171456. Throughput: 0: 2447.2. Samples: 290396. Policy #0 lag: (min: 0.0, avg: 0.7, max: 3.0)
|
272 |
+
[2025-02-26 18:46:06,901][00031] Avg episode reward: [(0, '4.539')]
|
273 |
+
[2025-02-26 18:46:08,858][01164] Updated weights for policy 0, policy_version 290 (0.0018)
|
274 |
+
[2025-02-26 18:46:11,899][00031] Fps is (10 sec: 9421.1, 60 sec: 9762.1, 300 sec: 9011.2). Total num frames: 1216512. Throughput: 0: 2414.1. Samples: 303968. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
275 |
+
[2025-02-26 18:46:11,901][00031] Avg episode reward: [(0, '4.492')]
|
276 |
+
[2025-02-26 18:46:12,814][01164] Updated weights for policy 0, policy_version 300 (0.0017)
|
277 |
+
[2025-02-26 18:46:16,900][00031] Fps is (10 sec: 9420.6, 60 sec: 9693.8, 300 sec: 9040.4). Total num frames: 1265664. Throughput: 0: 2408.6. Samples: 311336. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
278 |
+
[2025-02-26 18:46:16,901][00031] Avg episode reward: [(0, '4.301')]
|
279 |
+
[2025-02-26 18:46:16,989][01164] Updated weights for policy 0, policy_version 310 (0.0015)
|
280 |
+
[2025-02-26 18:46:20,964][01164] Updated weights for policy 0, policy_version 320 (0.0018)
|
281 |
+
[2025-02-26 18:46:21,899][00031] Fps is (10 sec: 9830.5, 60 sec: 9693.9, 300 sec: 9067.7). Total num frames: 1314816. Throughput: 0: 2439.9. Samples: 326464. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
282 |
+
[2025-02-26 18:46:21,901][00031] Avg episode reward: [(0, '4.431')]
|
283 |
+
[2025-02-26 18:46:25,238][01164] Updated weights for policy 0, policy_version 330 (0.0019)
|
284 |
+
[2025-02-26 18:46:26,899][00031] Fps is (10 sec: 9830.6, 60 sec: 9693.9, 300 sec: 9093.1). Total num frames: 1363968. Throughput: 0: 2454.0. Samples: 341412. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
285 |
+
[2025-02-26 18:46:26,901][00031] Avg episode reward: [(0, '4.508')]
|
286 |
+
[2025-02-26 18:46:29,381][01164] Updated weights for policy 0, policy_version 340 (0.0016)
|
287 |
+
[2025-02-26 18:46:31,899][00031] Fps is (10 sec: 10239.9, 60 sec: 9693.9, 300 sec: 9143.3). Total num frames: 1417216. Throughput: 0: 2458.5. Samples: 348832. Policy #0 lag: (min: 0.0, avg: 0.8, max: 3.0)
|
288 |
+
[2025-02-26 18:46:31,901][00031] Avg episode reward: [(0, '4.684')]
|
289 |
+
[2025-02-26 18:46:33,496][01164] Updated weights for policy 0, policy_version 350 (0.0018)
|
290 |
+
[2025-02-26 18:46:36,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9830.5, 300 sec: 9164.8). Total num frames: 1466368. Throughput: 0: 2458.6. Samples: 363604. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
291 |
+
[2025-02-26 18:46:36,901][00031] Avg episode reward: [(0, '4.505')]
|
292 |
+
[2025-02-26 18:46:37,719][01164] Updated weights for policy 0, policy_version 360 (0.0017)
|
293 |
+
[2025-02-26 18:46:41,899][00031] Fps is (10 sec: 9420.7, 60 sec: 9762.1, 300 sec: 9160.1). Total num frames: 1511424. Throughput: 0: 2426.9. Samples: 377028. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
294 |
+
[2025-02-26 18:46:41,903][00031] Avg episode reward: [(0, '4.740')]
|
295 |
+
[2025-02-26 18:46:41,906][01151] Saving new best policy, reward=4.740!
|
296 |
+
[2025-02-26 18:46:42,361][01164] Updated weights for policy 0, policy_version 370 (0.0015)
|
297 |
+
[2025-02-26 18:46:46,642][01164] Updated weights for policy 0, policy_version 380 (0.0019)
|
298 |
+
[2025-02-26 18:46:46,899][00031] Fps is (10 sec: 9011.1, 60 sec: 9693.9, 300 sec: 9155.8). Total num frames: 1556480. Throughput: 0: 2417.5. Samples: 384156. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
299 |
+
[2025-02-26 18:46:46,901][00031] Avg episode reward: [(0, '4.899')]
|
300 |
+
[2025-02-26 18:46:46,912][01151] Saving new best policy, reward=4.899!
|
301 |
+
[2025-02-26 18:46:50,725][01164] Updated weights for policy 0, policy_version 390 (0.0016)
|
302 |
+
[2025-02-26 18:46:51,899][00031] Fps is (10 sec: 9420.9, 60 sec: 9693.9, 300 sec: 9175.0). Total num frames: 1605632. Throughput: 0: 2413.8. Samples: 399016. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
303 |
+
[2025-02-26 18:46:51,901][00031] Avg episode reward: [(0, '4.655')]
|
304 |
+
[2025-02-26 18:46:54,924][01164] Updated weights for policy 0, policy_version 400 (0.0017)
|
305 |
+
[2025-02-26 18:46:56,899][00031] Fps is (10 sec: 10240.1, 60 sec: 9762.1, 300 sec: 9216.0). Total num frames: 1658880. Throughput: 0: 2440.0. Samples: 413768. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
306 |
+
[2025-02-26 18:46:56,902][00031] Avg episode reward: [(0, '4.877')]
|
307 |
+
[2025-02-26 18:46:59,082][01164] Updated weights for policy 0, policy_version 410 (0.0015)
|
308 |
+
[2025-02-26 18:47:01,899][00031] Fps is (10 sec: 10240.1, 60 sec: 9762.2, 300 sec: 9232.6). Total num frames: 1708032. Throughput: 0: 2442.9. Samples: 421268. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
309 |
+
[2025-02-26 18:47:01,903][00031] Avg episode reward: [(0, '4.948')]
|
310 |
+
[2025-02-26 18:47:01,905][01151] Saving new best policy, reward=4.948!
|
311 |
+
[2025-02-26 18:47:03,193][01164] Updated weights for policy 0, policy_version 420 (0.0018)
|
312 |
+
[2025-02-26 18:47:06,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9693.9, 300 sec: 9226.8). Total num frames: 1753088. Throughput: 0: 2435.4. Samples: 436056. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
313 |
+
[2025-02-26 18:47:06,902][00031] Avg episode reward: [(0, '4.642')]
|
314 |
+
[2025-02-26 18:47:07,296][01164] Updated weights for policy 0, policy_version 430 (0.0021)
|
315 |
+
[2025-02-26 18:47:11,784][01164] Updated weights for policy 0, policy_version 440 (0.0017)
|
316 |
+
[2025-02-26 18:47:11,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9762.1, 300 sec: 9242.3). Total num frames: 1802240. Throughput: 0: 2424.4. Samples: 450512. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
317 |
+
[2025-02-26 18:47:11,901][00031] Avg episode reward: [(0, '4.935')]
|
318 |
+
[2025-02-26 18:47:16,285][01164] Updated weights for policy 0, policy_version 450 (0.0026)
|
319 |
+
[2025-02-26 18:47:16,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9693.9, 300 sec: 9236.5). Total num frames: 1847296. Throughput: 0: 2396.3. Samples: 456664. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
320 |
+
[2025-02-26 18:47:16,901][00031] Avg episode reward: [(0, '4.896')]
|
321 |
+
[2025-02-26 18:47:20,419][01164] Updated weights for policy 0, policy_version 460 (0.0015)
|
322 |
+
[2025-02-26 18:47:21,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9693.9, 300 sec: 9251.0). Total num frames: 1896448. Throughput: 0: 2398.2. Samples: 471524. Policy #0 lag: (min: 0.0, avg: 0.8, max: 3.0)
|
323 |
+
[2025-02-26 18:47:21,901][00031] Avg episode reward: [(0, '4.634')]
|
324 |
+
[2025-02-26 18:47:24,499][01164] Updated weights for policy 0, policy_version 470 (0.0016)
|
325 |
+
[2025-02-26 18:47:26,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9264.8). Total num frames: 1945600. Throughput: 0: 2431.1. Samples: 486428. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
326 |
+
[2025-02-26 18:47:26,901][00031] Avg episode reward: [(0, '5.011')]
|
327 |
+
[2025-02-26 18:47:26,907][01151] Saving new best policy, reward=5.011!
|
328 |
+
[2025-02-26 18:47:28,769][01164] Updated weights for policy 0, policy_version 480 (0.0016)
|
329 |
+
[2025-02-26 18:47:31,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9277.9). Total num frames: 1994752. Throughput: 0: 2434.9. Samples: 493724. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
330 |
+
[2025-02-26 18:47:31,901][00031] Avg episode reward: [(0, '4.912')]
|
331 |
+
[2025-02-26 18:47:32,738][01164] Updated weights for policy 0, policy_version 490 (0.0019)
|
332 |
+
[2025-02-26 18:47:36,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9290.5). Total num frames: 2043904. Throughput: 0: 2435.8. Samples: 508628. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
333 |
+
[2025-02-26 18:47:36,901][00031] Avg episode reward: [(0, '5.212')]
|
334 |
+
[2025-02-26 18:47:36,909][01151] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000499_2043904.pth...
|
335 |
+
[2025-02-26 18:47:36,969][01151] Saving new best policy, reward=5.212!
|
336 |
+
[2025-02-26 18:47:37,106][01164] Updated weights for policy 0, policy_version 500 (0.0016)
|
337 |
+
[2025-02-26 18:47:40,976][01164] Updated weights for policy 0, policy_version 510 (0.0016)
|
338 |
+
[2025-02-26 18:47:41,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9762.2, 300 sec: 9320.7). Total num frames: 2097152. Throughput: 0: 2439.6. Samples: 523548. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
339 |
+
[2025-02-26 18:47:41,900][00031] Avg episode reward: [(0, '5.423')]
|
340 |
+
[2025-02-26 18:47:41,902][01151] Saving new best policy, reward=5.423!
|
341 |
+
[2025-02-26 18:47:45,923][01164] Updated weights for policy 0, policy_version 520 (0.0018)
|
342 |
+
[2025-02-26 18:47:46,899][00031] Fps is (10 sec: 9420.6, 60 sec: 9693.8, 300 sec: 9296.1). Total num frames: 2138112. Throughput: 0: 2421.1. Samples: 530220. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
343 |
+
[2025-02-26 18:47:46,901][00031] Avg episode reward: [(0, '5.034')]
|
344 |
+
[2025-02-26 18:47:50,029][01164] Updated weights for policy 0, policy_version 530 (0.0020)
|
345 |
+
[2025-02-26 18:47:51,899][00031] Fps is (10 sec: 8601.6, 60 sec: 9625.6, 300 sec: 9290.1). Total num frames: 2183168. Throughput: 0: 2395.3. Samples: 543844. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
346 |
+
[2025-02-26 18:47:51,901][00031] Avg episode reward: [(0, '5.208')]
|
347 |
+
[2025-02-26 18:47:54,382][01164] Updated weights for policy 0, policy_version 540 (0.0019)
|
348 |
+
[2025-02-26 18:47:56,899][00031] Fps is (10 sec: 9830.6, 60 sec: 9625.6, 300 sec: 9318.4). Total num frames: 2236416. Throughput: 0: 2398.5. Samples: 558444. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
349 |
+
[2025-02-26 18:47:56,901][00031] Avg episode reward: [(0, '5.176')]
|
350 |
+
[2025-02-26 18:47:58,496][01164] Updated weights for policy 0, policy_version 550 (0.0015)
|
351 |
+
[2025-02-26 18:48:01,899][00031] Fps is (10 sec: 10239.9, 60 sec: 9625.6, 300 sec: 9328.8). Total num frames: 2285568. Throughput: 0: 2429.5. Samples: 565992. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
352 |
+
[2025-02-26 18:48:01,901][00031] Avg episode reward: [(0, '5.512')]
|
353 |
+
[2025-02-26 18:48:01,903][01151] Saving new best policy, reward=5.512!
|
354 |
+
[2025-02-26 18:48:02,751][01164] Updated weights for policy 0, policy_version 560 (0.0025)
|
355 |
+
[2025-02-26 18:48:06,706][01164] Updated weights for policy 0, policy_version 570 (0.0016)
|
356 |
+
[2025-02-26 18:48:06,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9338.9). Total num frames: 2334720. Throughput: 0: 2426.1. Samples: 580700. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
357 |
+
[2025-02-26 18:48:06,901][00031] Avg episode reward: [(0, '5.303')]
|
358 |
+
[2025-02-26 18:48:11,047][01164] Updated weights for policy 0, policy_version 580 (0.0017)
|
359 |
+
[2025-02-26 18:48:11,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9348.5). Total num frames: 2383872. Throughput: 0: 2423.6. Samples: 595492. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
360 |
+
[2025-02-26 18:48:11,904][00031] Avg episode reward: [(0, '5.573')]
|
361 |
+
[2025-02-26 18:48:11,907][01151] Saving new best policy, reward=5.573!
|
362 |
+
[2025-02-26 18:48:15,010][01164] Updated weights for policy 0, policy_version 590 (0.0019)
|
363 |
+
[2025-02-26 18:48:16,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9693.9, 300 sec: 9342.0). Total num frames: 2428928. Throughput: 0: 2424.7. Samples: 602836. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
364 |
+
[2025-02-26 18:48:16,903][00031] Avg episode reward: [(0, '5.203')]
|
365 |
+
[2025-02-26 18:48:19,769][01164] Updated weights for policy 0, policy_version 600 (0.0016)
|
366 |
+
[2025-02-26 18:48:21,899][00031] Fps is (10 sec: 9011.3, 60 sec: 9625.6, 300 sec: 9335.8). Total num frames: 2473984. Throughput: 0: 2387.0. Samples: 616044. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
367 |
+
[2025-02-26 18:48:21,901][00031] Avg episode reward: [(0, '5.402')]
|
368 |
+
[2025-02-26 18:48:24,121][01164] Updated weights for policy 0, policy_version 610 (0.0018)
|
369 |
+
[2025-02-26 18:48:26,900][00031] Fps is (10 sec: 9420.6, 60 sec: 9625.6, 300 sec: 9344.9). Total num frames: 2523136. Throughput: 0: 2382.3. Samples: 630752. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
370 |
+
[2025-02-26 18:48:26,901][00031] Avg episode reward: [(0, '5.474')]
|
371 |
+
[2025-02-26 18:48:28,247][01164] Updated weights for policy 0, policy_version 620 (0.0017)
|
372 |
+
[2025-02-26 18:48:31,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9353.8). Total num frames: 2572288. Throughput: 0: 2398.6. Samples: 638156. Policy #0 lag: (min: 0.0, avg: 1.0, max: 4.0)
|
373 |
+
[2025-02-26 18:48:31,901][00031] Avg episode reward: [(0, '5.841')]
|
374 |
+
[2025-02-26 18:48:31,904][01151] Saving new best policy, reward=5.841!
|
375 |
+
[2025-02-26 18:48:32,503][01164] Updated weights for policy 0, policy_version 630 (0.0021)
|
376 |
+
[2025-02-26 18:48:36,462][01164] Updated weights for policy 0, policy_version 640 (0.0017)
|
377 |
+
[2025-02-26 18:48:36,899][00031] Fps is (10 sec: 9830.7, 60 sec: 9625.6, 300 sec: 9362.3). Total num frames: 2621440. Throughput: 0: 2425.8. Samples: 653004. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
|
378 |
+
[2025-02-26 18:48:36,900][00031] Avg episode reward: [(0, '6.122')]
|
379 |
+
[2025-02-26 18:48:36,908][01151] Saving new best policy, reward=6.122!
|
380 |
+
[2025-02-26 18:48:40,510][01164] Updated weights for policy 0, policy_version 650 (0.0022)
|
381 |
+
[2025-02-26 18:48:41,899][00031] Fps is (10 sec: 10240.1, 60 sec: 9625.6, 300 sec: 9384.9). Total num frames: 2674688. Throughput: 0: 2430.9. Samples: 667836. Policy #0 lag: (min: 0.0, avg: 0.8, max: 3.0)
|
382 |
+
[2025-02-26 18:48:41,900][00031] Avg episode reward: [(0, '5.253')]
|
383 |
+
[2025-02-26 18:48:44,899][01164] Updated weights for policy 0, policy_version 660 (0.0019)
|
384 |
+
[2025-02-26 18:48:46,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9378.4). Total num frames: 2719744. Throughput: 0: 2425.1. Samples: 675120. Policy #0 lag: (min: 0.0, avg: 0.9, max: 3.0)
|
385 |
+
[2025-02-26 18:48:46,901][00031] Avg episode reward: [(0, '5.196')]
|
386 |
+
[2025-02-26 18:48:49,143][01164] Updated weights for policy 0, policy_version 670 (0.0016)
|
387 |
+
[2025-02-26 18:48:51,899][00031] Fps is (10 sec: 9011.1, 60 sec: 9693.9, 300 sec: 9372.2). Total num frames: 2764800. Throughput: 0: 2405.4. Samples: 688944. Policy #0 lag: (min: 0.0, avg: 0.9, max: 3.0)
|
388 |
+
[2025-02-26 18:48:51,900][00031] Avg episode reward: [(0, '5.378')]
|
389 |
+
[2025-02-26 18:48:53,770][01164] Updated weights for policy 0, policy_version 680 (0.0017)
|
390 |
+
[2025-02-26 18:48:56,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9625.6, 300 sec: 9538.8). Total num frames: 2813952. Throughput: 0: 2397.2. Samples: 703364. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
391 |
+
[2025-02-26 18:48:56,901][00031] Avg episode reward: [(0, '5.623')]
|
392 |
+
[2025-02-26 18:48:57,877][01164] Updated weights for policy 0, policy_version 690 (0.0018)
|
393 |
+
[2025-02-26 18:49:01,900][00031] Fps is (10 sec: 9830.1, 60 sec: 9625.6, 300 sec: 9691.7). Total num frames: 2863104. Throughput: 0: 2390.8. Samples: 710424. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
394 |
+
[2025-02-26 18:49:01,902][00031] Avg episode reward: [(0, '5.594')]
|
395 |
+
[2025-02-26 18:49:02,196][01164] Updated weights for policy 0, policy_version 700 (0.0020)
|
396 |
+
[2025-02-26 18:49:06,315][01164] Updated weights for policy 0, policy_version 710 (0.0019)
|
397 |
+
[2025-02-26 18:49:06,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9625.6, 300 sec: 9705.4). Total num frames: 2912256. Throughput: 0: 2425.8. Samples: 725204. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
398 |
+
[2025-02-26 18:49:06,901][00031] Avg episode reward: [(0, '5.313')]
|
399 |
+
[2025-02-26 18:49:10,384][01164] Updated weights for policy 0, policy_version 720 (0.0023)
|
400 |
+
[2025-02-26 18:49:11,899][00031] Fps is (10 sec: 9830.7, 60 sec: 9625.6, 300 sec: 9719.3). Total num frames: 2961408. Throughput: 0: 2430.9. Samples: 740144. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
401 |
+
[2025-02-26 18:49:11,901][00031] Avg episode reward: [(0, '5.271')]
|
402 |
+
[2025-02-26 18:49:14,485][01164] Updated weights for policy 0, policy_version 730 (0.0017)
|
403 |
+
[2025-02-26 18:49:16,900][00031] Fps is (10 sec: 9830.2, 60 sec: 9693.8, 300 sec: 9719.3). Total num frames: 3010560. Throughput: 0: 2430.0. Samples: 747508. Policy #0 lag: (min: 0.0, avg: 1.1, max: 2.0)
|
404 |
+
[2025-02-26 18:49:16,901][00031] Avg episode reward: [(0, '5.705')]
|
405 |
+
[2025-02-26 18:49:18,739][01164] Updated weights for policy 0, policy_version 740 (0.0022)
|
406 |
+
[2025-02-26 18:49:21,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9762.1, 300 sec: 9705.4). Total num frames: 3059712. Throughput: 0: 2434.8. Samples: 762568. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
407 |
+
[2025-02-26 18:49:21,901][00031] Avg episode reward: [(0, '5.736')]
|
408 |
+
[2025-02-26 18:49:23,346][01164] Updated weights for policy 0, policy_version 750 (0.0019)
|
409 |
+
[2025-02-26 18:49:26,899][00031] Fps is (10 sec: 9421.0, 60 sec: 9693.9, 300 sec: 9719.3). Total num frames: 3104768. Throughput: 0: 2404.7. Samples: 776048. Policy #0 lag: (min: 0.0, avg: 1.1, max: 4.0)
|
410 |
+
[2025-02-26 18:49:26,901][00031] Avg episode reward: [(0, '5.284')]
|
411 |
+
[2025-02-26 18:49:27,587][01164] Updated weights for policy 0, policy_version 760 (0.0020)
|
412 |
+
[2025-02-26 18:49:31,698][01164] Updated weights for policy 0, policy_version 770 (0.0020)
|
413 |
+
[2025-02-26 18:49:31,899][00031] Fps is (10 sec: 9420.9, 60 sec: 9693.9, 300 sec: 9719.3). Total num frames: 3153920. Throughput: 0: 2406.9. Samples: 783432. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
414 |
+
[2025-02-26 18:49:31,900][00031] Avg episode reward: [(0, '5.964')]
|
415 |
+
[2025-02-26 18:49:35,728][01164] Updated weights for policy 0, policy_version 780 (0.0017)
|
416 |
+
[2025-02-26 18:49:36,899][00031] Fps is (10 sec: 9830.3, 60 sec: 9693.9, 300 sec: 9705.4). Total num frames: 3203072. Throughput: 0: 2430.9. Samples: 798336. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
|
417 |
+
[2025-02-26 18:49:36,904][00031] Avg episode reward: [(0, '5.459')]
|
418 |
+
[2025-02-26 18:49:36,924][01151] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000783_3207168.pth...
|
419 |
+
[2025-02-26 18:49:36,984][01151] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000214_876544.pth
|
420 |
+
[2025-02-26 18:49:39,852][01164] Updated weights for policy 0, policy_version 790 (0.0015)
|
421 |
+
[2025-02-26 18:49:41,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9693.9, 300 sec: 9719.3). Total num frames: 3256320. Throughput: 0: 2445.7. Samples: 813420. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
422 |
+
[2025-02-26 18:49:41,901][00031] Avg episode reward: [(0, '5.405')]
|
423 |
+
[2025-02-26 18:49:43,947][01164] Updated weights for policy 0, policy_version 800 (0.0018)
|
424 |
+
[2025-02-26 18:49:46,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9762.1, 300 sec: 9719.3). Total num frames: 3305472. Throughput: 0: 2454.1. Samples: 820856. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
425 |
+
[2025-02-26 18:49:46,900][00031] Avg episode reward: [(0, '6.214')]
|
426 |
+
[2025-02-26 18:49:46,910][01151] Saving new best policy, reward=6.214!
|
427 |
+
[2025-02-26 18:49:47,981][01164] Updated weights for policy 0, policy_version 810 (0.0017)
|
428 |
+
[2025-02-26 18:49:51,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9830.4, 300 sec: 9719.3). Total num frames: 3354624. Throughput: 0: 2457.9. Samples: 835808. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
429 |
+
[2025-02-26 18:49:51,901][00031] Avg episode reward: [(0, '6.287')]
|
430 |
+
[2025-02-26 18:49:51,904][01151] Saving new best policy, reward=6.287!
|
431 |
+
[2025-02-26 18:49:52,189][01164] Updated weights for policy 0, policy_version 820 (0.0019)
|
432 |
+
[2025-02-26 18:49:56,899][00031] Fps is (10 sec: 9011.2, 60 sec: 9693.9, 300 sec: 9691.6). Total num frames: 3395584. Throughput: 0: 2421.7. Samples: 849120. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
433 |
+
[2025-02-26 18:49:56,902][00031] Avg episode reward: [(0, '5.601')]
|
434 |
+
[2025-02-26 18:49:56,980][01164] Updated weights for policy 0, policy_version 830 (0.0020)
|
435 |
+
[2025-02-26 18:50:01,097][01164] Updated weights for policy 0, policy_version 840 (0.0016)
|
436 |
+
[2025-02-26 18:50:01,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9762.2, 300 sec: 9705.4). Total num frames: 3448832. Throughput: 0: 2425.7. Samples: 856664. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
|
437 |
+
[2025-02-26 18:50:01,901][00031] Avg episode reward: [(0, '6.318')]
|
438 |
+
[2025-02-26 18:50:01,903][01151] Saving new best policy, reward=6.318!
|
439 |
+
[2025-02-26 18:50:05,179][01164] Updated weights for policy 0, policy_version 850 (0.0018)
|
440 |
+
[2025-02-26 18:50:06,899][00031] Fps is (10 sec: 10240.0, 60 sec: 9762.1, 300 sec: 9719.3). Total num frames: 3497984. Throughput: 0: 2420.1. Samples: 871472. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
|
441 |
+
[2025-02-26 18:50:06,901][00031] Avg episode reward: [(0, '6.070')]
|
442 |
+
[2025-02-26 18:50:09,164][01164] Updated weights for policy 0, policy_version 860 (0.0020)
|
443 |
+
[2025-02-26 18:50:11,899][00031] Fps is (10 sec: 9830.3, 60 sec: 9762.1, 300 sec: 9705.4). Total num frames: 3547136. Throughput: 0: 2455.6. Samples: 886552. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
|
444 |
+
[2025-02-26 18:50:11,901][00031] Avg episode reward: [(0, '6.180')]
|
445 |
+
[2025-02-26 18:50:13,445][01164] Updated weights for policy 0, policy_version 870 (0.0019)
|
446 |
+
[2025-02-26 18:50:16,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9762.2, 300 sec: 9705.4). Total num frames: 3596288. Throughput: 0: 2454.7. Samples: 893892. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
447 |
+
[2025-02-26 18:50:16,901][00031] Avg episode reward: [(0, '5.804')]
|
448 |
+
[2025-02-26 18:50:17,441][01164] Updated weights for policy 0, policy_version 880 (0.0018)
|
449 |
+
[2025-02-26 18:50:21,578][01164] Updated weights for policy 0, policy_version 890 (0.0020)
|
450 |
+
[2025-02-26 18:50:21,901][00031] Fps is (10 sec: 9829.0, 60 sec: 9761.9, 300 sec: 9705.4). Total num frames: 3645440. Throughput: 0: 2456.1. Samples: 908864. Policy #0 lag: (min: 0.0, avg: 0.9, max: 3.0)
|
451 |
+
[2025-02-26 18:50:21,902][00031] Avg episode reward: [(0, '5.803')]
|
452 |
+
[2025-02-26 18:50:25,928][01164] Updated weights for policy 0, policy_version 900 (0.0019)
|
453 |
+
[2025-02-26 18:50:26,899][00031] Fps is (10 sec: 9420.8, 60 sec: 9762.1, 300 sec: 9677.7). Total num frames: 3690496. Throughput: 0: 2447.6. Samples: 923564. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
|
454 |
+
[2025-02-26 18:50:26,905][00031] Avg episode reward: [(0, '5.848')]
|
455 |
+
[2025-02-26 18:50:30,505][01164] Updated weights for policy 0, policy_version 910 (0.0018)
|
456 |
+
[2025-02-26 18:50:31,899][00031] Fps is (10 sec: 9422.2, 60 sec: 9762.1, 300 sec: 9705.5). Total num frames: 3739648. Throughput: 0: 2416.1. Samples: 929580. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
457 |
+
[2025-02-26 18:50:31,901][00031] Avg episode reward: [(0, '5.100')]
|
458 |
+
[2025-02-26 18:50:34,811][01164] Updated weights for policy 0, policy_version 920 (0.0016)
|
459 |
+
[2025-02-26 18:50:36,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9762.1, 300 sec: 9705.4). Total num frames: 3788800. Throughput: 0: 2409.0. Samples: 944212. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0)
|
460 |
+
[2025-02-26 18:50:36,901][00031] Avg episode reward: [(0, '5.964')]
|
461 |
+
[2025-02-26 18:50:38,729][01164] Updated weights for policy 0, policy_version 930 (0.0016)
|
462 |
+
[2025-02-26 18:50:41,902][00031] Fps is (10 sec: 9828.0, 60 sec: 9693.5, 300 sec: 9705.4). Total num frames: 3837952. Throughput: 0: 2445.7. Samples: 959184. Policy #0 lag: (min: 0.0, avg: 1.3, max: 4.0)
|
463 |
+
[2025-02-26 18:50:41,904][00031] Avg episode reward: [(0, '5.876')]
|
464 |
+
[2025-02-26 18:50:43,009][01164] Updated weights for policy 0, policy_version 940 (0.0019)
|
465 |
+
[2025-02-26 18:50:46,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9693.9, 300 sec: 9705.4). Total num frames: 3887104. Throughput: 0: 2441.2. Samples: 966516. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
466 |
+
[2025-02-26 18:50:46,901][00031] Avg episode reward: [(0, '5.769')]
|
467 |
+
[2025-02-26 18:50:46,985][01164] Updated weights for policy 0, policy_version 950 (0.0017)
|
468 |
+
[2025-02-26 18:50:51,313][01164] Updated weights for policy 0, policy_version 960 (0.0016)
|
469 |
+
[2025-02-26 18:50:51,899][00031] Fps is (10 sec: 9832.9, 60 sec: 9693.9, 300 sec: 9705.4). Total num frames: 3936256. Throughput: 0: 2445.7. Samples: 981528. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
|
470 |
+
[2025-02-26 18:50:51,901][00031] Avg episode reward: [(0, '6.021')]
|
471 |
+
[2025-02-26 18:50:55,355][01164] Updated weights for policy 0, policy_version 970 (0.0017)
|
472 |
+
[2025-02-26 18:50:56,899][00031] Fps is (10 sec: 9830.4, 60 sec: 9830.4, 300 sec: 9705.4). Total num frames: 3985408. Throughput: 0: 2438.6. Samples: 996288. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
|
473 |
+
[2025-02-26 18:50:56,901][00031] Avg episode reward: [(0, '5.460')]
|
474 |
+
[2025-02-26 18:50:58,672][01151] Stopping Batcher_0...
|
475 |
+
[2025-02-26 18:50:58,672][01151] Loop batcher_evt_loop terminating...
|
476 |
+
[2025-02-26 18:50:58,673][01151] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
477 |
+
[2025-02-26 18:50:58,672][00031] Component Batcher_0 stopped!
|
478 |
+
[2025-02-26 18:50:58,707][01164] Weights refcount: 2 0
|
479 |
+
[2025-02-26 18:50:58,714][01164] Stopping InferenceWorker_p0-w0...
|
480 |
+
[2025-02-26 18:50:58,715][01164] Loop inference_proc0-0_evt_loop terminating...
|
481 |
+
[2025-02-26 18:50:58,715][00031] Component InferenceWorker_p0-w0 stopped!
|
482 |
+
[2025-02-26 18:50:58,733][01151] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000499_2043904.pth
|
483 |
+
[2025-02-26 18:50:58,740][01151] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
484 |
+
[2025-02-26 18:50:58,839][01151] Stopping LearnerWorker_p0...
|
485 |
+
[2025-02-26 18:50:58,840][01151] Loop learner_proc0_evt_loop terminating...
|
486 |
+
[2025-02-26 18:50:58,840][00031] Component LearnerWorker_p0 stopped!
|
487 |
+
[2025-02-26 18:50:58,970][00031] Component RolloutWorker_w6 stopped!
|
488 |
+
[2025-02-26 18:50:58,973][01171] Stopping RolloutWorker_w6...
|
489 |
+
[2025-02-26 18:50:58,973][01171] Loop rollout_proc6_evt_loop terminating...
|
490 |
+
[2025-02-26 18:50:58,977][01170] Stopping RolloutWorker_w5...
|
491 |
+
[2025-02-26 18:50:58,978][00031] Component RolloutWorker_w5 stopped!
|
492 |
+
[2025-02-26 18:50:58,981][01166] Stopping RolloutWorker_w1...
|
493 |
+
[2025-02-26 18:50:58,981][00031] Component RolloutWorker_w1 stopped!
|
494 |
+
[2025-02-26 18:50:58,978][01170] Loop rollout_proc5_evt_loop terminating...
|
495 |
+
[2025-02-26 18:50:58,982][01166] Loop rollout_proc1_evt_loop terminating...
|
496 |
+
[2025-02-26 18:50:59,000][00031] Component RolloutWorker_w2 stopped!
|
497 |
+
[2025-02-26 18:50:59,000][01167] Stopping RolloutWorker_w2...
|
498 |
+
[2025-02-26 18:50:59,005][01167] Loop rollout_proc2_evt_loop terminating...
|
499 |
+
[2025-02-26 18:50:59,202][01169] Stopping RolloutWorker_w4...
|
500 |
+
[2025-02-26 18:50:59,202][00031] Component RolloutWorker_w4 stopped!
|
501 |
+
[2025-02-26 18:50:59,203][01169] Loop rollout_proc4_evt_loop terminating...
|
502 |
+
[2025-02-26 18:50:59,221][00031] Component RolloutWorker_w0 stopped!
|
503 |
+
[2025-02-26 18:50:59,223][01165] Stopping RolloutWorker_w0...
|
504 |
+
[2025-02-26 18:50:59,224][01165] Loop rollout_proc0_evt_loop terminating...
|
505 |
+
[2025-02-26 18:50:59,383][01172] Stopping RolloutWorker_w7...
|
506 |
+
[2025-02-26 18:50:59,384][01168] Stopping RolloutWorker_w3...
|
507 |
+
[2025-02-26 18:50:59,383][00031] Component RolloutWorker_w7 stopped!
|
508 |
+
[2025-02-26 18:50:59,385][01168] Loop rollout_proc3_evt_loop terminating...
|
509 |
+
[2025-02-26 18:50:59,385][00031] Component RolloutWorker_w3 stopped!
|
510 |
+
[2025-02-26 18:50:59,386][00031] Waiting for process learner_proc0 to stop...
|
511 |
+
[2025-02-26 18:50:59,383][01172] Loop rollout_proc7_evt_loop terminating...
|
512 |
+
[2025-02-26 18:51:00,198][00031] Waiting for process inference_proc0-0 to join...
|
513 |
+
[2025-02-26 18:51:00,200][00031] Waiting for process rollout_proc0 to join...
|
514 |
+
[2025-02-26 18:51:00,969][00031] Waiting for process rollout_proc1 to join...
|
515 |
+
[2025-02-26 18:51:00,971][00031] Waiting for process rollout_proc2 to join...
|
516 |
+
[2025-02-26 18:51:00,972][00031] Waiting for process rollout_proc3 to join...
|
517 |
+
[2025-02-26 18:51:01,477][00031] Waiting for process rollout_proc4 to join...
|
518 |
+
[2025-02-26 18:51:01,478][00031] Waiting for process rollout_proc5 to join...
|
519 |
+
[2025-02-26 18:51:01,479][00031] Waiting for process rollout_proc6 to join...
|
520 |
+
[2025-02-26 18:51:01,480][00031] Waiting for process rollout_proc7 to join...
|
521 |
+
[2025-02-26 18:51:01,481][00031] Batcher 0 profile tree view:
|
522 |
+
batching: 19.5622, releasing_batches: 0.0286
|
523 |
+
[2025-02-26 18:51:01,482][00031] InferenceWorker_p0-w0 profile tree view:
|
524 |
+
wait_policy: 0.0000
|
525 |
+
wait_policy_total: 58.3027
|
526 |
+
update_model: 5.5282
|
527 |
+
weight_update: 0.0023
|
528 |
+
one_step: 0.0030
|
529 |
+
handle_policy_step: 340.0363
|
530 |
+
deserialize: 10.9278, stack: 1.9846, obs_to_device_normalize: 72.5292, forward: 171.3019, send_messages: 12.6319
|
531 |
+
prepare_outputs: 54.1347
|
532 |
+
to_cpu: 33.5259
|
533 |
+
[2025-02-26 18:51:01,483][00031] Learner 0 profile tree view:
|
534 |
+
misc: 0.0059, prepare_batch: 12.7594
|
535 |
+
train: 52.6156
|
536 |
+
epoch_init: 0.0057, minibatch_init: 0.0076, losses_postprocess: 0.5134, kl_divergence: 0.5844, after_optimizer: 19.9850
|
537 |
+
calculate_losses: 18.3925
|
538 |
+
losses_init: 0.0036, forward_head: 1.0291, bptt_initial: 12.5241, tail: 0.7407, advantages_returns: 0.1913, losses: 1.4690
|
539 |
+
bptt: 2.2050
|
540 |
+
bptt_forward_core: 2.1292
|
541 |
+
update: 12.6759
|
542 |
+
clip: 0.8635
|
543 |
+
[2025-02-26 18:51:01,484][00031] RolloutWorker_w0 profile tree view:
|
544 |
+
wait_for_trajectories: 0.1455, enqueue_policy_requests: 6.9095, env_step: 374.2936, overhead: 7.1374, complete_rollouts: 0.8485
|
545 |
+
save_policy_outputs: 9.0334
|
546 |
+
split_output_tensors: 3.6183
|
547 |
+
[2025-02-26 18:51:01,485][00031] RolloutWorker_w7 profile tree view:
|
548 |
+
wait_for_trajectories: 0.1504, enqueue_policy_requests: 7.0626, env_step: 372.7928, overhead: 7.2863, complete_rollouts: 0.7316
|
549 |
+
save_policy_outputs: 9.3004
|
550 |
+
split_output_tensors: 3.6883
|
551 |
+
[2025-02-26 18:51:01,486][00031] Loop Runner_EvtLoop terminating...
|
552 |
+
[2025-02-26 18:51:01,488][00031] Runner profile tree view:
|
553 |
+
main_loop: 439.5736
|
554 |
+
[2025-02-26 18:51:01,489][00031] Collected {0: 4005888}, FPS: 9113.1
|
555 |
+
[2025-02-26 18:51:01,846][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
556 |
+
[2025-02-26 18:51:01,847][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
557 |
+
[2025-02-26 18:51:01,848][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
558 |
+
[2025-02-26 18:51:01,848][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
559 |
+
[2025-02-26 18:51:01,849][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
560 |
+
[2025-02-26 18:51:01,851][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
561 |
+
[2025-02-26 18:51:01,852][00031] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
562 |
+
[2025-02-26 18:51:01,852][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
563 |
+
[2025-02-26 18:51:01,853][00031] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
564 |
+
[2025-02-26 18:51:01,854][00031] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
565 |
+
[2025-02-26 18:51:01,854][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
566 |
+
[2025-02-26 18:51:01,855][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
567 |
+
[2025-02-26 18:51:01,857][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
568 |
+
[2025-02-26 18:51:01,857][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
569 |
+
[2025-02-26 18:51:01,858][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
570 |
+
[2025-02-26 18:51:01,888][00031] Doom resolution: 160x120, resize resolution: (128, 72)
|
571 |
+
[2025-02-26 18:51:01,891][00031] RunningMeanStd input shape: (3, 72, 128)
|
572 |
+
[2025-02-26 18:51:01,893][00031] RunningMeanStd input shape: (1,)
|
573 |
+
[2025-02-26 18:51:01,906][00031] ConvEncoder: input_channels=3
|
574 |
+
[2025-02-26 18:51:02,010][00031] Conv encoder output size: 512
|
575 |
+
[2025-02-26 18:51:02,011][00031] Policy head output size: 512
|
576 |
+
[2025-02-26 18:51:02,211][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
577 |
+
[2025-02-26 18:51:03,031][00031] Num frames 100...
|
578 |
+
[2025-02-26 18:51:03,151][00031] Num frames 200...
|
579 |
+
[2025-02-26 18:51:03,263][00031] Num frames 300...
|
580 |
+
[2025-02-26 18:51:03,385][00031] Num frames 400...
|
581 |
+
[2025-02-26 18:51:03,509][00031] Num frames 500...
|
582 |
+
[2025-02-26 18:51:03,597][00031] Avg episode rewards: #0: 8.270, true rewards: #0: 5.270
|
583 |
+
[2025-02-26 18:51:03,598][00031] Avg episode reward: 8.270, avg true_objective: 5.270
|
584 |
+
[2025-02-26 18:51:03,685][00031] Num frames 600...
|
585 |
+
[2025-02-26 18:51:03,806][00031] Num frames 700...
|
586 |
+
[2025-02-26 18:51:03,925][00031] Num frames 800...
|
587 |
+
[2025-02-26 18:51:04,043][00031] Num frames 900...
|
588 |
+
[2025-02-26 18:51:04,164][00031] Num frames 1000...
|
589 |
+
[2025-02-26 18:51:04,227][00031] Avg episode rewards: #0: 7.035, true rewards: #0: 5.035
|
590 |
+
[2025-02-26 18:51:04,228][00031] Avg episode reward: 7.035, avg true_objective: 5.035
|
591 |
+
[2025-02-26 18:51:04,335][00031] Num frames 1100...
|
592 |
+
[2025-02-26 18:51:04,452][00031] Num frames 1200...
|
593 |
+
[2025-02-26 18:51:04,569][00031] Num frames 1300...
|
594 |
+
[2025-02-26 18:51:04,692][00031] Num frames 1400...
|
595 |
+
[2025-02-26 18:51:04,774][00031] Avg episode rewards: #0: 6.410, true rewards: #0: 4.743
|
596 |
+
[2025-02-26 18:51:04,775][00031] Avg episode reward: 6.410, avg true_objective: 4.743
|
597 |
+
[2025-02-26 18:51:04,871][00031] Num frames 1500...
|
598 |
+
[2025-02-26 18:51:04,998][00031] Num frames 1600...
|
599 |
+
[2025-02-26 18:51:05,116][00031] Num frames 1700...
|
600 |
+
[2025-02-26 18:51:05,234][00031] Num frames 1800...
|
601 |
+
[2025-02-26 18:51:05,354][00031] Num frames 1900...
|
602 |
+
[2025-02-26 18:51:05,451][00031] Avg episode rewards: #0: 6.838, true rewards: #0: 4.837
|
603 |
+
[2025-02-26 18:51:05,452][00031] Avg episode reward: 6.838, avg true_objective: 4.837
|
604 |
+
[2025-02-26 18:51:05,529][00031] Num frames 2000...
|
605 |
+
[2025-02-26 18:51:05,652][00031] Num frames 2100...
|
606 |
+
[2025-02-26 18:51:05,778][00031] Num frames 2200...
|
607 |
+
[2025-02-26 18:51:05,899][00031] Num frames 2300...
|
608 |
+
[2025-02-26 18:51:05,977][00031] Avg episode rewards: #0: 6.238, true rewards: #0: 4.638
|
609 |
+
[2025-02-26 18:51:05,977][00031] Avg episode reward: 6.238, avg true_objective: 4.638
|
610 |
+
[2025-02-26 18:51:06,072][00031] Num frames 2400...
|
611 |
+
[2025-02-26 18:51:06,199][00031] Num frames 2500...
|
612 |
+
[2025-02-26 18:51:06,321][00031] Num frames 2600...
|
613 |
+
[2025-02-26 18:51:06,440][00031] Num frames 2700...
|
614 |
+
[2025-02-26 18:51:06,498][00031] Avg episode rewards: #0: 5.838, true rewards: #0: 4.505
|
615 |
+
[2025-02-26 18:51:06,499][00031] Avg episode reward: 5.838, avg true_objective: 4.505
|
616 |
+
[2025-02-26 18:51:06,622][00031] Num frames 2800...
|
617 |
+
[2025-02-26 18:51:06,742][00031] Num frames 2900...
|
618 |
+
[2025-02-26 18:51:06,868][00031] Num frames 3000...
|
619 |
+
[2025-02-26 18:51:07,031][00031] Avg episode rewards: #0: 5.553, true rewards: #0: 4.410
|
620 |
+
[2025-02-26 18:51:07,032][00031] Avg episode reward: 5.553, avg true_objective: 4.410
|
621 |
+
[2025-02-26 18:51:07,050][00031] Num frames 3100...
|
622 |
+
[2025-02-26 18:51:07,169][00031] Num frames 3200...
|
623 |
+
[2025-02-26 18:51:07,287][00031] Num frames 3300...
|
624 |
+
[2025-02-26 18:51:07,409][00031] Num frames 3400...
|
625 |
+
[2025-02-26 18:51:07,537][00031] Num frames 3500...
|
626 |
+
[2025-02-26 18:51:07,639][00031] Avg episode rewards: #0: 5.544, true rewards: #0: 4.419
|
627 |
+
[2025-02-26 18:51:07,640][00031] Avg episode reward: 5.544, avg true_objective: 4.419
|
628 |
+
[2025-02-26 18:51:07,717][00031] Num frames 3600...
|
629 |
+
[2025-02-26 18:51:07,838][00031] Num frames 3700...
|
630 |
+
[2025-02-26 18:51:07,965][00031] Num frames 3800...
|
631 |
+
[2025-02-26 18:51:08,092][00031] Num frames 3900...
|
632 |
+
[2025-02-26 18:51:08,219][00031] Num frames 4000...
|
633 |
+
[2025-02-26 18:51:08,346][00031] Num frames 4100...
|
634 |
+
[2025-02-26 18:51:08,496][00031] Avg episode rewards: #0: 6.194, true rewards: #0: 4.639
|
635 |
+
[2025-02-26 18:51:08,497][00031] Avg episode reward: 6.194, avg true_objective: 4.639
|
636 |
+
[2025-02-26 18:51:08,527][00031] Num frames 4200...
|
637 |
+
[2025-02-26 18:51:08,651][00031] Num frames 4300...
|
638 |
+
[2025-02-26 18:51:08,769][00031] Num frames 4400...
|
639 |
+
[2025-02-26 18:51:08,894][00031] Num frames 4500...
|
640 |
+
[2025-02-26 18:51:09,010][00031] Num frames 4600...
|
641 |
+
[2025-02-26 18:51:09,128][00031] Num frames 4700...
|
642 |
+
[2025-02-26 18:51:09,279][00031] Avg episode rewards: #0: 6.483, true rewards: #0: 4.783
|
643 |
+
[2025-02-26 18:51:09,280][00031] Avg episode reward: 6.483, avg true_objective: 4.783
|
644 |
+
[2025-02-26 18:51:22,784][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|
645 |
+
[2025-02-26 18:53:06,496][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
646 |
+
[2025-02-26 18:53:06,497][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
647 |
+
[2025-02-26 18:53:06,498][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
648 |
+
[2025-02-26 18:53:06,499][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
649 |
+
[2025-02-26 18:53:06,499][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
650 |
+
[2025-02-26 18:53:06,501][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
651 |
+
[2025-02-26 18:53:06,502][00031] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
652 |
+
[2025-02-26 18:53:06,503][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
653 |
+
[2025-02-26 18:53:06,504][00031] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
654 |
+
[2025-02-26 18:53:06,505][00031] Adding new argument 'hf_repository'='francescosabbarese/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
655 |
+
[2025-02-26 18:53:06,506][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
656 |
+
[2025-02-26 18:53:06,507][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
657 |
+
[2025-02-26 18:53:06,508][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
658 |
+
[2025-02-26 18:53:06,509][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
659 |
+
[2025-02-26 18:53:06,509][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
660 |
+
[2025-02-26 18:53:06,533][00031] RunningMeanStd input shape: (3, 72, 128)
|
661 |
+
[2025-02-26 18:53:06,535][00031] RunningMeanStd input shape: (1,)
|
662 |
+
[2025-02-26 18:53:06,545][00031] ConvEncoder: input_channels=3
|
663 |
+
[2025-02-26 18:53:06,583][00031] Conv encoder output size: 512
|
664 |
+
[2025-02-26 18:53:06,584][00031] Policy head output size: 512
|
665 |
+
[2025-02-26 18:53:06,595][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
666 |
+
[2025-02-26 18:53:07,020][00031] Num frames 100...
|
667 |
+
[2025-02-26 18:53:07,139][00031] Num frames 200...
|
668 |
+
[2025-02-26 18:53:07,259][00031] Num frames 300...
|
669 |
+
[2025-02-26 18:53:07,379][00031] Num frames 400...
|
670 |
+
[2025-02-26 18:53:07,502][00031] Num frames 500...
|
671 |
+
[2025-02-26 18:53:07,623][00031] Num frames 600...
|
672 |
+
[2025-02-26 18:53:07,728][00031] Avg episode rewards: #0: 10.400, true rewards: #0: 6.400
|
673 |
+
[2025-02-26 18:53:07,729][00031] Avg episode reward: 10.400, avg true_objective: 6.400
|
674 |
+
[2025-02-26 18:53:07,797][00031] Num frames 700...
|
675 |
+
[2025-02-26 18:53:07,914][00031] Num frames 800...
|
676 |
+
[2025-02-26 18:53:08,032][00031] Num frames 900...
|
677 |
+
[2025-02-26 18:53:08,151][00031] Num frames 1000...
|
678 |
+
[2025-02-26 18:53:08,233][00031] Avg episode rewards: #0: 7.120, true rewards: #0: 5.120
|
679 |
+
[2025-02-26 18:53:08,234][00031] Avg episode reward: 7.120, avg true_objective: 5.120
|
680 |
+
[2025-02-26 18:53:08,324][00031] Num frames 1100...
|
681 |
+
[2025-02-26 18:53:08,438][00031] Num frames 1200...
|
682 |
+
[2025-02-26 18:53:08,556][00031] Num frames 1300...
|
683 |
+
[2025-02-26 18:53:08,675][00031] Num frames 1400...
|
684 |
+
[2025-02-26 18:53:08,795][00031] Num frames 1500...
|
685 |
+
[2025-02-26 18:53:08,914][00031] Num frames 1600...
|
686 |
+
[2025-02-26 18:53:09,042][00031] Avg episode rewards: #0: 8.213, true rewards: #0: 5.547
|
687 |
+
[2025-02-26 18:53:09,043][00031] Avg episode reward: 8.213, avg true_objective: 5.547
|
688 |
+
[2025-02-26 18:53:09,086][00031] Num frames 1700...
|
689 |
+
[2025-02-26 18:53:09,209][00031] Num frames 1800...
|
690 |
+
[2025-02-26 18:53:09,326][00031] Num frames 1900...
|
691 |
+
[2025-02-26 18:53:09,444][00031] Num frames 2000...
|
692 |
+
[2025-02-26 18:53:09,558][00031] Avg episode rewards: #0: 7.120, true rewards: #0: 5.120
|
693 |
+
[2025-02-26 18:53:09,559][00031] Avg episode reward: 7.120, avg true_objective: 5.120
|
694 |
+
[2025-02-26 18:53:09,623][00031] Num frames 2100...
|
695 |
+
[2025-02-26 18:53:09,745][00031] Num frames 2200...
|
696 |
+
[2025-02-26 18:53:09,866][00031] Num frames 2300...
|
697 |
+
[2025-02-26 18:53:09,990][00031] Num frames 2400...
|
698 |
+
[2025-02-26 18:53:10,160][00031] Avg episode rewards: #0: 6.792, true rewards: #0: 4.992
|
699 |
+
[2025-02-26 18:53:10,161][00031] Avg episode reward: 6.792, avg true_objective: 4.992
|
700 |
+
[2025-02-26 18:53:10,168][00031] Num frames 2500...
|
701 |
+
[2025-02-26 18:53:10,284][00031] Num frames 2600...
|
702 |
+
[2025-02-26 18:53:10,401][00031] Num frames 2700...
|
703 |
+
[2025-02-26 18:53:10,519][00031] Num frames 2800...
|
704 |
+
[2025-02-26 18:53:10,670][00031] Avg episode rewards: #0: 6.300, true rewards: #0: 4.800
|
705 |
+
[2025-02-26 18:53:10,671][00031] Avg episode reward: 6.300, avg true_objective: 4.800
|
706 |
+
[2025-02-26 18:53:10,697][00031] Num frames 2900...
|
707 |
+
[2025-02-26 18:53:10,816][00031] Num frames 3000...
|
708 |
+
[2025-02-26 18:53:10,936][00031] Num frames 3100...
|
709 |
+
[2025-02-26 18:53:11,059][00031] Num frames 3200...
|
710 |
+
[2025-02-26 18:53:11,195][00031] Avg episode rewards: #0: 5.949, true rewards: #0: 4.663
|
711 |
+
[2025-02-26 18:53:11,196][00031] Avg episode reward: 5.949, avg true_objective: 4.663
|
712 |
+
[2025-02-26 18:53:11,242][00031] Num frames 3300...
|
713 |
+
[2025-02-26 18:53:11,366][00031] Num frames 3400...
|
714 |
+
[2025-02-26 18:53:11,491][00031] Num frames 3500...
|
715 |
+
[2025-02-26 18:53:11,617][00031] Num frames 3600...
|
716 |
+
[2025-02-26 18:53:11,737][00031] Num frames 3700...
|
717 |
+
[2025-02-26 18:53:11,841][00031] Avg episode rewards: #0: 5.930, true rewards: #0: 4.680
|
718 |
+
[2025-02-26 18:53:11,842][00031] Avg episode reward: 5.930, avg true_objective: 4.680
|
719 |
+
[2025-02-26 18:53:11,911][00031] Num frames 3800...
|
720 |
+
[2025-02-26 18:53:12,030][00031] Num frames 3900...
|
721 |
+
[2025-02-26 18:53:12,150][00031] Num frames 4000...
|
722 |
+
[2025-02-26 18:53:12,267][00031] Num frames 4100...
|
723 |
+
[2025-02-26 18:53:12,357][00031] Avg episode rewards: #0: 5.698, true rewards: #0: 4.587
|
724 |
+
[2025-02-26 18:53:12,358][00031] Avg episode reward: 5.698, avg true_objective: 4.587
|
725 |
+
[2025-02-26 18:53:12,441][00031] Num frames 4200...
|
726 |
+
[2025-02-26 18:53:12,558][00031] Num frames 4300...
|
727 |
+
[2025-02-26 18:53:12,682][00031] Num frames 4400...
|
728 |
+
[2025-02-26 18:53:12,795][00031] Avg episode rewards: #0: 5.548, true rewards: #0: 4.448
|
729 |
+
[2025-02-26 18:53:12,796][00031] Avg episode reward: 5.548, avg true_objective: 4.448
|
730 |
+
[2025-02-26 18:53:24,771][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|