--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-langtok_new results: [] --- # bert-base-multilingual-cased-finetuned-langtok_new This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0399 - Precision: 0.8690 - Recall: 0.8859 - F1: 0.8774 - Accuracy: 0.9898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0693 | 1.0 | 1137 | 0.0519 | 0.8315 | 0.8521 | 0.8417 | 0.9859 | | 0.0365 | 2.0 | 2274 | 0.0432 | 0.8616 | 0.8808 | 0.8711 | 0.9890 | | 0.0205 | 3.0 | 3411 | 0.0399 | 0.8690 | 0.8859 | 0.8774 | 0.9898 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1