Added ONNX code, and fixed examples for saving to avoid confusion. (#20)
Browse files- Added ONNX code, and fixed examples for saving to avoid confusion. (d69aea178cf98e849c0ebf38a6c224997f15b120)
README.md
CHANGED
@@ -59,6 +59,7 @@ from docling_core.types.doc import DoclingDocument
|
|
59 |
from docling_core.types.doc.document import DocTagsDocument
|
60 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
61 |
from transformers.image_utils import load_image
|
|
|
62 |
|
63 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
64 |
|
@@ -107,7 +108,8 @@ doc.load_from_doctags(doctags_doc)
|
|
107 |
|
108 |
# export as any format
|
109 |
# HTML
|
110 |
-
#
|
|
|
111 |
# MD
|
112 |
print(doc.export_to_markdown())
|
113 |
```
|
@@ -129,6 +131,7 @@ from vllm import LLM, SamplingParams
|
|
129 |
from PIL import Image
|
130 |
from docling_core.types.doc import DoclingDocument
|
131 |
from docling_core.types.doc.document import DocTagsDocument
|
|
|
132 |
|
133 |
# Configuration
|
134 |
MODEL_PATH = "ds4sd/SmolDocling-256M-preview"
|
@@ -175,15 +178,145 @@ for idx, img_file in enumerate(image_files, 1):
|
|
175 |
doc.load_from_doctags(doctags_doc)
|
176 |
# export as any format
|
177 |
# HTML
|
178 |
-
#
|
|
|
179 |
# MD
|
180 |
-
|
181 |
-
output_path_md = os.path.join(OUTPUT_DIR, output_filename_md)
|
182 |
doc.save_as_markdown(output_path_md)
|
183 |
-
|
184 |
print(f"Total time: {time.time() - start_time:.2f} sec")
|
185 |
```
|
186 |
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
💻 Local inference on Apple Silicon with MLX: [see here](https://huggingface.co/ds4sd/SmolDocling-256M-preview-mlx-bf16)
|
189 |
|
|
|
59 |
from docling_core.types.doc.document import DocTagsDocument
|
60 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
61 |
from transformers.image_utils import load_image
|
62 |
+
from pathlib import Path
|
63 |
|
64 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
65 |
|
|
|
108 |
|
109 |
# export as any format
|
110 |
# HTML
|
111 |
+
# output_path_html = Path("Out/") / "example.html"
|
112 |
+
# doc.save_as_html(output_filoutput_path_htmle_path)
|
113 |
# MD
|
114 |
print(doc.export_to_markdown())
|
115 |
```
|
|
|
131 |
from PIL import Image
|
132 |
from docling_core.types.doc import DoclingDocument
|
133 |
from docling_core.types.doc.document import DocTagsDocument
|
134 |
+
from pathlib import Path
|
135 |
|
136 |
# Configuration
|
137 |
MODEL_PATH = "ds4sd/SmolDocling-256M-preview"
|
|
|
178 |
doc.load_from_doctags(doctags_doc)
|
179 |
# export as any format
|
180 |
# HTML
|
181 |
+
# output_path_html = Path(OUTPUT_DIR) / f"{img_fn}.html"
|
182 |
+
# doc.save_as_html(output_path_html)
|
183 |
# MD
|
184 |
+
output_path_md = Path(OUTPUT_DIR) / f"{img_fn}.md"
|
|
|
185 |
doc.save_as_markdown(output_path_md)
|
|
|
186 |
print(f"Total time: {time.time() - start_time:.2f} sec")
|
187 |
```
|
188 |
</details>
|
189 |
+
<details>
|
190 |
+
<summary> ONNX Inference</summary>
|
191 |
+
|
192 |
+
```python
|
193 |
+
# Prerequisites:
|
194 |
+
# pip install onnxruntime
|
195 |
+
# pip install onnxruntime-gpu
|
196 |
+
from transformers import AutoConfig, AutoProcessor
|
197 |
+
from transformers.image_utils import load_image
|
198 |
+
import onnxruntime
|
199 |
+
import numpy as np
|
200 |
+
import os
|
201 |
+
from docling_core.types.doc import DoclingDocument
|
202 |
+
from docling_core.types.doc.document import DocTagsDocument
|
203 |
+
|
204 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
205 |
+
# cuda
|
206 |
+
os.environ["ORT_CUDA_USE_MAX_WORKSPACE"] = "1"
|
207 |
+
|
208 |
+
# 1. Load models
|
209 |
+
## Load config and processor
|
210 |
+
model_id = "ds4sd/SmolDocling-256M-preview"
|
211 |
+
config = AutoConfig.from_pretrained(model_id)
|
212 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
213 |
+
|
214 |
+
## Load sessions
|
215 |
+
# !wget https://huggingface.co/ds4sd/SmolDocling-256M-preview/resolve/main/onnx/vision_encoder.onnx
|
216 |
+
# !wget https://huggingface.co/ds4sd/SmolDocling-256M-preview/resolve/main/onnx/embed_tokens.onnx
|
217 |
+
# !wget https://huggingface.co/ds4sd/SmolDocling-256M-preview/resolve/main/onnx/decoder_model_merged.onnx
|
218 |
+
# cpu
|
219 |
+
# vision_session = onnxruntime.InferenceSession("vision_encoder.onnx")
|
220 |
+
# embed_session = onnxruntime.InferenceSession("embed_tokens.onnx")
|
221 |
+
# decoder_session = onnxruntime.InferenceSession("decoder_model_merged.onnx"
|
222 |
+
|
223 |
+
# cuda
|
224 |
+
vision_session = onnxruntime.InferenceSession("vision_encoder.onnx", providers=["CUDAExecutionProvider"])
|
225 |
+
embed_session = onnxruntime.InferenceSession("embed_tokens.onnx", providers=["CUDAExecutionProvider"])
|
226 |
+
decoder_session = onnxruntime.InferenceSession("decoder_model_merged.onnx", providers=["CUDAExecutionProvider"])
|
227 |
+
|
228 |
+
## Set config values
|
229 |
+
num_key_value_heads = config.text_config.num_key_value_heads
|
230 |
+
head_dim = config.text_config.head_dim
|
231 |
+
num_hidden_layers = config.text_config.num_hidden_layers
|
232 |
+
eos_token_id = config.text_config.eos_token_id
|
233 |
+
image_token_id = config.image_token_id
|
234 |
+
end_of_utterance_id = processor.tokenizer.convert_tokens_to_ids("<end_of_utterance>")
|
235 |
+
|
236 |
+
# 2. Prepare inputs
|
237 |
+
## Create input messages
|
238 |
+
messages = [
|
239 |
+
{
|
240 |
+
"role": "user",
|
241 |
+
"content": [
|
242 |
+
{"type": "image"},
|
243 |
+
{"type": "text", "text": "Convert this page to docling."}
|
244 |
+
]
|
245 |
+
},
|
246 |
+
]
|
247 |
+
|
248 |
+
## Load image and apply processor
|
249 |
+
image = load_image("https://ibm.biz/docling-page-with-table")
|
250 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
251 |
+
inputs = processor(text=prompt, images=[image], return_tensors="np")
|
252 |
+
|
253 |
+
## Prepare decoder inputs
|
254 |
+
batch_size = inputs['input_ids'].shape[0]
|
255 |
+
past_key_values = {
|
256 |
+
f'past_key_values.{layer}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
|
257 |
+
for layer in range(num_hidden_layers)
|
258 |
+
for kv in ('key', 'value')
|
259 |
+
}
|
260 |
+
image_features = None
|
261 |
+
input_ids = inputs['input_ids']
|
262 |
+
attention_mask = inputs['attention_mask']
|
263 |
+
position_ids = np.cumsum(inputs['attention_mask'], axis=-1)
|
264 |
+
|
265 |
+
|
266 |
+
# 3. Generation loop
|
267 |
+
max_new_tokens = 8192
|
268 |
+
generated_tokens = np.array([[]], dtype=np.int64)
|
269 |
+
for i in range(max_new_tokens):
|
270 |
+
inputs_embeds = embed_session.run(None, {'input_ids': input_ids})[0]
|
271 |
+
|
272 |
+
if image_features is None:
|
273 |
+
## Only compute vision features if not already computed
|
274 |
+
image_features = vision_session.run(
|
275 |
+
['image_features'], # List of output names or indices
|
276 |
+
{
|
277 |
+
'pixel_values': inputs['pixel_values'],
|
278 |
+
'pixel_attention_mask': inputs['pixel_attention_mask'].astype(np.bool_)
|
279 |
+
}
|
280 |
+
)[0]
|
281 |
+
|
282 |
+
## Merge text and vision embeddings
|
283 |
+
inputs_embeds[inputs['input_ids'] == image_token_id] = image_features.reshape(-1, image_features.shape[-1])
|
284 |
+
|
285 |
+
logits, *present_key_values = decoder_session.run(None, dict(
|
286 |
+
inputs_embeds=inputs_embeds,
|
287 |
+
attention_mask=attention_mask,
|
288 |
+
position_ids=position_ids,
|
289 |
+
**past_key_values,
|
290 |
+
))
|
291 |
+
|
292 |
+
## Update values for next generation loop
|
293 |
+
input_ids = logits[:, -1].argmax(-1, keepdims=True)
|
294 |
+
attention_mask = np.ones_like(input_ids)
|
295 |
+
position_ids = position_ids[:, -1:] + 1
|
296 |
+
for j, key in enumerate(past_key_values):
|
297 |
+
past_key_values[key] = present_key_values[j]
|
298 |
+
|
299 |
+
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
|
300 |
+
if (input_ids == eos_token_id).all() or (input_ids == end_of_utterance_id).all():
|
301 |
+
break # Stop predicting
|
302 |
+
|
303 |
+
doctags = processor.batch_decode(
|
304 |
+
generated_tokens,
|
305 |
+
skip_special_tokens=False,
|
306 |
+
)[0].lstrip()
|
307 |
+
|
308 |
+
print(doctags)
|
309 |
+
|
310 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
311 |
+
print(doctags)
|
312 |
+
# create a docling document
|
313 |
+
doc = DoclingDocument(name="Document")
|
314 |
+
doc.load_from_doctags(doctags_doc)
|
315 |
+
|
316 |
+
print(doc.export_to_markdown())
|
317 |
+
```
|
318 |
+
</details>
|
319 |
+
|
320 |
|
321 |
💻 Local inference on Apple Silicon with MLX: [see here](https://huggingface.co/ds4sd/SmolDocling-256M-preview-mlx-bf16)
|
322 |
|