import datasets import csv import os # For a future citation perhaps? # _CITATION = """\ # @inproceedings{luong-vu-2016-non, # title = "A non-expert {K}aldi recipe for {V}ietnamese Speech Recognition System", # author = "Luong, Hieu-Thi and # Vu, Hai-Quan", # booktitle = "Proceedings of the Third International Workshop on Worldwide Language Service Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human Language Technologies ({WLSI}/{OIAF}4{HLT}2016)", # month = dec, # year = "2016", # address = "Osaka, Japan", # publisher = "The COLING 2016 Organizing Committee", # url = "https://aclanthology.org/W16-5207", # pages = "51--55", # } # """ _DESCRIPTION = """\ Dataset consisting of isolated beatbox samples , reimplementation of the dataset from the following paper: BaDumTss: Multi-task Learning for Beatbox Transcription """ _HOMEPAGE = "https://doi.org/10.1007/978-3-031-05981-0_14" _LICENSE = "MIT" _DATA_URL = "https://huggingface.co/datasets/maxardito/beatbox/resolve/main/dataset" class BeatboxDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, features=datasets.Features({ "path": datasets.Value("string"), "class": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), }), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, # citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_manager.download_config.ignore_url_params = True audio_path = {} local_extracted_archive = {} metadata_path = {} split_type = { "train": datasets.Split.TRAIN, "test": datasets.Split.TEST } for split in split_type: audio_path[split] = dl_manager.download( f"{_DATA_URL}/audio_{split}.tar.gz") local_extracted_archive[split] = dl_manager.extract( audio_path[split]) if not dl_manager.is_streaming else None metadata_path[split] = dl_manager.download_and_extract( f"{_DATA_URL}/metadata_{split}.csv.gz") path_to_clips = "beatbox" return [ datasets.SplitGenerator( name=split_type[split], gen_kwargs={ "local_extracted_archive": local_extracted_archive[split], "audio_files": dl_manager.iter_archive(audio_path[split]), "metadata_path": dl_manager.download_and_extract(metadata_path[split]), "path_to_clips": path_to_clips, }, ) for split in split_type ] def _generate_examples( self, local_extracted_archive, audio_files, metadata_path, path_to_clips, ): """Yields examples.""" data_fields = list(self._info().features.keys()) metadata = {} with open(metadata_path, "r", encoding="utf-8") as f: reader = csv.DictReader(f) print("Metadata Path: ", metadata_path) for row in reader: if self.config.name == "_all_": print("Row[path]: ", row["path"]) row["path"] = os.path.join(path_to_clips, row["path"]) # if data is incomplete, fill with empty values for field in data_fields: print("Field: ", field) if field not in row: row[field] = "" metadata[row["path"]] = row id_ = 0 for path, f in audio_files: if path in metadata: result = dict(metadata[path]) # set the audio feature and the path to the extracted file path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path result["audio"] = {"path": path, "bytes": f.read()} result["path"] = path yield id_, result id_ += 1