--- license: cc-by-4.0 dataset_info: features: - name: text dtype: string - name: file dtype: string - name: audio sequence: float64 - name: sampling_rate dtype: int64 - name: duration dtype: float64 splits: - name: train num_bytes: 12889189484 num_examples: 9500 - name: test num_bytes: 283646282 num_examples: 205 download_size: 3201049372 dataset_size: 13172835766 task_categories: - text-to-speech - text-to-audio language: - ar pretty_name: ClArTTS size_categories: - 1K<n<10K multiliguality: monolingual tags: - audio --- ## Dataset Summary We present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. ## Dataset Description - **Homepage:** [ClArTTS](http://www.clartts.com/) - **Paper:** [ClARTTS: An Open-Source Classical Arabic Text-to-Speech Corpus](https://www.isca-archive.org/interspeech_2023/kulkarni23_interspeech.pdf) ## Dataset Structure A typical data point comprises the name of the audio file, called 'file', its transcription, called `text`, the audio as an array, called 'audio'. Some additional information; sampling rate and audio duration. ``` DatasetDict({ train: Dataset({ features: ['text', 'file', 'audio', 'sampling_rate', 'duration'], num_rows: 9500 }) test: Dataset({ features: ['text', 'file', 'audio', 'sampling_rate', 'duration'], num_rows: 205 }) }) ``` ### Citation Information ``` @inproceedings{kulkarni2023clartts, author={Ajinkya Kulkarni and Atharva Kulkarni and Sara Abedalmon'em Mohammad Shatnawi and Hanan Aldarmaki}, title={ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus}, year={2023}, booktitle={2023 INTERSPEECH }, pages={5511--5515}, doi={10.21437/Interspeech.2023-2224} } ```