--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-kinetics-allkisa-crop-background-0312-clip_duration-abnormal12_resize results: [] --- # videomae-base-finetuned-kinetics-allkisa-crop-background-0312-clip_duration-abnormal12_resize This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3122 - Accuracy: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - training_steps: 29600 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6616 | 0.01 | 296 | 0.3786 | 0.8675 | | 0.1816 | 1.01 | 592 | 0.5763 | 0.8352 | | 0.0266 | 2.01 | 888 | 0.6628 | 0.8078 | | 0.4168 | 3.01 | 1184 | 0.4009 | 0.8562 | | 0.0271 | 4.01 | 1480 | 0.4466 | 0.8675 | | 0.4371 | 5.01 | 1776 | 0.5005 | 0.8498 | | 0.0269 | 6.01 | 2072 | 0.5684 | 0.8498 | | 0.0061 | 7.01 | 2368 | 0.5858 | 0.8643 | | 0.0262 | 8.01 | 2664 | 0.4571 | 0.8901 | | 0.0003 | 9.01 | 2960 | 0.6348 | 0.8627 | | 0.0004 | 10.01 | 3256 | 0.6531 | 0.8708 | | 0.002 | 11.01 | 3552 | 0.5016 | 0.8821 | | 0.0048 | 12.01 | 3848 | 0.6594 | 0.8578 | | 0.5788 | 13.01 | 4144 | 0.5558 | 0.8934 | | 0.0002 | 14.01 | 4440 | 0.6740 | 0.8611 | | 0.0001 | 15.01 | 4736 | 0.5346 | 0.8950 | | 0.007 | 16.01 | 5032 | 0.6110 | 0.8885 | | 0.0001 | 17.01 | 5328 | 0.6141 | 0.8869 | | 0.0363 | 18.01 | 5624 | 0.5504 | 0.8934 | | 0.0002 | 19.01 | 5920 | 0.5372 | 0.8982 | | 0.4009 | 20.01 | 6216 | 0.5422 | 0.8998 | | 0.0049 | 21.01 | 6512 | 0.5687 | 0.8918 | | 0.0048 | 22.01 | 6808 | 0.5355 | 0.8982 | | 0.0 | 23.01 | 7104 | 0.5720 | 0.8982 | | 0.0038 | 24.01 | 7400 | 0.5421 | 0.9047 | | 0.0004 | 25.01 | 7696 | 0.6254 | 0.8950 | | 0.0002 | 26.01 | 7992 | 0.5809 | 0.8998 | | 0.0031 | 27.01 | 8288 | 0.5869 | 0.8966 | | 0.0011 | 28.01 | 8584 | 0.6073 | 0.8950 | | 0.0001 | 29.01 | 8880 | 0.5942 | 0.9015 | | 0.5734 | 30.01 | 9176 | 0.5724 | 0.8998 | | 0.0001 | 31.01 | 9472 | 0.5558 | 0.9047 | | 0.0001 | 32.01 | 9768 | 0.5694 | 0.8982 | | 0.0 | 33.01 | 10064 | 0.5874 | 0.9031 | | 0.0 | 34.01 | 10360 | 0.6037 | 0.8966 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0