File size: 2,532 Bytes
a23fbd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---

library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: my_awesome_mind_model
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: minds14
      type: minds14
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.061946902654867256
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_mind_model



This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.

It achieves the following results on the evaluation set:

- Loss: 2.6833

- Accuracy: 0.0619



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| No log        | 0.8   | 3    | 2.6436          | 0.0531   |

| No log        | 1.8   | 6    | 2.6539          | 0.0619   |

| No log        | 2.8   | 9    | 2.6605          | 0.0619   |

| 3.0289        | 3.8   | 12   | 2.6671          | 0.0619   |

| 3.0289        | 4.8   | 15   | 2.6762          | 0.0531   |

| 3.0289        | 5.8   | 18   | 2.6771          | 0.0531   |

| 3.0071        | 6.8   | 21   | 2.6796          | 0.0619   |

| 3.0071        | 7.8   | 24   | 2.6820          | 0.0619   |

| 3.0071        | 8.8   | 27   | 2.6833          | 0.0531   |

| 2.9986        | 9.8   | 30   | 2.6833          | 0.0619   |





### Framework versions



- Transformers 4.49.0.dev0

- Pytorch 2.2.2+cu118

- Datasets 3.3.1.dev0

- Tokenizers 0.21.0