Commit
·
e0f651c
1
Parent(s):
41c7cee
Update README.md
Browse files
README.md
CHANGED
@@ -1,21 +1,25 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
library_name: generic
|
9 |
language:
|
10 |
-
|
11 |
-
- en
|
12 |
widget:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
---
|
20 |
|
21 |
# bkai-foundation-models/vietnamese-bi-encoder
|
@@ -26,7 +30,7 @@ We train the model on a merged training dataset that consists of:
|
|
26 |
- Squadv2 (translated in Vietnamese)
|
27 |
- 80% of the training set from the Legal Text Retrieval Zalo 2021 challenge
|
28 |
|
29 |
-
We use phobert-base-v2 as the pre-trained backbone.
|
30 |
|
31 |
Here are the results on the remaining 20% of the training set from the Legal Text Retrieval Zalo 2021 challenge:
|
32 |
|
@@ -52,7 +56,9 @@ Then you can use the model like this:
|
|
52 |
|
53 |
```python
|
54 |
from sentence_transformers import SentenceTransformer
|
55 |
-
|
|
|
|
|
56 |
|
57 |
model = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder')
|
58 |
embeddings = model.encode(sentences)
|
@@ -75,8 +81,8 @@ def mean_pooling(model_output, attention_mask):
|
|
75 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
76 |
|
77 |
|
78 |
-
# Sentences we want sentence embeddings
|
79 |
-
sentences = ['
|
80 |
|
81 |
# Load model from HuggingFace Hub
|
82 |
tokenizer = AutoTokenizer.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder')
|
@@ -96,12 +102,6 @@ print("Sentence embeddings:")
|
|
96 |
print(sentence_embeddings)
|
97 |
```
|
98 |
|
99 |
-
## Evaluation Results
|
100 |
-
|
101 |
-
<!--- Describe how your model was evaluated -->
|
102 |
-
|
103 |
-
For an automated evaluation of this model, see the _Sentence Embeddings Benchmark_: [https://seb.sbert.net](https://seb.sbert.net?model_name=bkai-foundation-models/vietnamese-bi-encoder)
|
104 |
-
|
105 |
## Training
|
106 |
|
107 |
The model was trained with the parameters:
|
@@ -148,8 +148,4 @@ SentenceTransformer(
|
|
148 |
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
149 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
150 |
)
|
151 |
-
```
|
152 |
-
|
153 |
-
## Citing & Authors
|
154 |
-
|
155 |
-
<!--- Describe where people can find more information -->
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
library_name: generic
|
9 |
language:
|
10 |
+
- vi
|
|
|
11 |
widget:
|
12 |
+
- source_sentence: Làm thế nào Đại học Bách khoa Hà Nội thu hút sinh viên quốc tế?
|
13 |
+
sentences:
|
14 |
+
- >-
|
15 |
+
Đại học Bách khoa Hà Nội đã phát triển các chương trình đào tạo bằng tiếng
|
16 |
+
Anh để làm cho việc học tại đây dễ dàng hơn cho sinh viên quốc tế.
|
17 |
+
- >-
|
18 |
+
Môi trường học tập đa dạng và sự hỗ trợ đầy đủ cho sinh viên quốc tế tại Đại
|
19 |
+
học Bách khoa Hà Nội giúp họ thích nghi nhanh chóng.
|
20 |
+
- Hà Nội có khí hậu mát mẻ vào mùa thu.
|
21 |
+
- Các món ăn ở Hà Nội rất ngon và đa dạng.
|
22 |
+
license: apache-2.0
|
23 |
---
|
24 |
|
25 |
# bkai-foundation-models/vietnamese-bi-encoder
|
|
|
30 |
- Squadv2 (translated in Vietnamese)
|
31 |
- 80% of the training set from the Legal Text Retrieval Zalo 2021 challenge
|
32 |
|
33 |
+
We use [phobert-base-v2](https://github.com/VinAIResearch/PhoBERT) as the pre-trained backbone.
|
34 |
|
35 |
Here are the results on the remaining 20% of the training set from the Legal Text Retrieval Zalo 2021 challenge:
|
36 |
|
|
|
56 |
|
57 |
```python
|
58 |
from sentence_transformers import SentenceTransformer
|
59 |
+
|
60 |
+
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
|
61 |
+
sentences = ["Cô ấy là một người vui_tính .", "Cô ấy cười nói suốt cả ngày ."]
|
62 |
|
63 |
model = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder')
|
64 |
embeddings = model.encode(sentences)
|
|
|
81 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
82 |
|
83 |
|
84 |
+
# Sentences we want sentence embeddings, we could use pyvi, underthesea, RDRSegment to segment words
|
85 |
+
sentences = ['Cô ấy là một người vui_tính .', 'Cô ấy cười nói suốt cả ngày .']
|
86 |
|
87 |
# Load model from HuggingFace Hub
|
88 |
tokenizer = AutoTokenizer.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder')
|
|
|
102 |
print(sentence_embeddings)
|
103 |
```
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
## Training
|
106 |
|
107 |
The model was trained with the parameters:
|
|
|
148 |
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
149 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
150 |
)
|
151 |
+
```
|
|
|
|
|
|
|
|