File size: 5,821 Bytes
47c31a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from transformers import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


class BaichuanM1Config(PretrainedConfig):
    r"""
    Configuration objects inherit from [`PretrainedConfig`] and control the behavior of model outputs. For more details, 
    refer to the documentation of [`PretrainedConfig`].

    Args:
        vocab_size (`int`, *optional*, defaults to 133120):
            The size of the vocabulary used by the model.
        hidden_size (`int`, *optional*, defaults to 4096):
            The dimensionality of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22016):
            The dimensionality of the intermediate (MLP) representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            The number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            The number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            The number of key-value heads used to implement Grouped Query Attention (GQA). 
            - If `num_key_value_heads == num_attention_heads`, the model uses Multi-Head Attention (MHA).
            - If `num_key_value_heads == 1`, the model uses Multi-Query Attention (MQA).
            - Otherwise, the model uses Grouped Query Attention (GQA). 
            When converting a multi-head checkpoint to a GQA checkpoint, each group's key and value heads are constructed 
            by mean-pooling the original heads within that group. For more details, refer to [this paper](https://arxiv.org/pdf/2305.13245.pdf). 
            If not specified, this defaults to `32`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (either a string or a callable function) used in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length the model can handle.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated normal initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon value used by the RMS normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/value attentions. This is only relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie the model's input and output word embeddings.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the Rotary Position Embeddings (RoPE).
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to enable sliding window attention.
        sliding_window (`int`, *optional*, defaults to 4096):
            The size of the sliding window for sliding window attention (SWA). If not specified, it defaults to `2048`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio applied to the attention probabilities.
    """

    model_type = "baichuan"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
            self,
            vocab_size=133120,
            hidden_size=5120,
            intermediate_size=17408,
            num_hidden_layers=40,
            num_attention_heads=40,
            num_key_value_heads=2,
            num_swa_attention_heads: int = 20,
            num_swa_key_value_heads=8,
            sliding_window_layers: list = None,
            hidden_act="silu",
            max_position_embeddings=32768,
            initializer_range=0.02,
            rms_norm_eps=1e-6,
            use_cache=True,
            tie_word_embeddings=False,
            rope_theta=100000.0,
            sliding_window=2048,
            attention_dropout=0.0,
            conv_window = 2,
            **kwargs,
    ):
        self.sliding_window_layers = sliding_window_layers
        self.num_swa_key_value_heads = num_swa_key_value_heads
        self.num_swa_attention_heads = num_swa_attention_heads
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout
        self.conv_window = conv_window
        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )