--- library_name: transformers language: - nl license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - Yassmen/TTS_English_Technical_data model-index: - name: SpeechT5 fine-tuning results: [] --- # SpeechT5 fine-tuning This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the PeekieTech data dataset. It achieves the following results on the evaluation set: - Loss: 0.4572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5281 | 3.5778 | 1000 | 0.4781 | | 0.4908 | 7.1556 | 2000 | 0.4661 | | 0.4972 | 10.7335 | 3000 | 0.4595 | | 0.4858 | 14.3113 | 4000 | 0.4572 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1