--- language: - en pipeline_tag: text-generation base_model: - google/gemma-2-2b license: gemma --- # gemma-2-2b-awq-uint4-asym-g128-lmhead-g32-fp16-onnx - ## Introduction This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset. - ## Quantization Strategy - ***Quantized Layers***: All linear layers - ***Weight***: uint4 asymmetric per-group. group_size=32 for lm_head, and group_size=128 for the rest. - ## Quick Start 1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html) 2. Run the quantization script in the example folder using the following command line: ```sh export MODEL_DIR = [local model checkpoint folder] or google/gemma-2-2b # single GPU python quantize_quark.py --model_dir $MODEL_DIR \ --output_dir output_dir $MODEL_NAME-awq-uint4-asym-g128-lmhead-g32-fp16 \ --quant_scheme w_uint4_per_group_asym \ --num_calib_data 128 \ --quant_algo awq \ --dataset pileval_for_awq_benchmark \ --model_export hf_format \ --group_size 128 \ --group_size_per_layer lm_head 32 \ --data_type float32 \ --exclude_layers # cpu python quantize_quark.py --model_dir $MODEL_DIR \ --output_dir output_dir $MODEL_NAME-awq-uint4-asym-g128-lmhead-g32-fp16 \ --quant_scheme w_uint4_per_group_asym \ --num_calib_data 128 \ --quant_algo awq \ --dataset pileval_for_awq_benchmark \ --model_export hf_format \ --group_size 128 \ --group_size_per_layer lm_head 32 \ --data_type float32 \ --exclude_layers \ --device cpu ``` ## Deployment Quark has its own export format, quark_safetensors, which is compatible with autoAWQ exports. #### License Modifications copyright(c) 2025 Advanced Micro Devices,Inc. All rights reserved.