--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: Deepfake-Audio-Detection-v1 results: [] --- # Deepfake-Audio-Detection-v1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0187 - Accuracy: 0.9966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1329 | 1.0 | 407 | 0.1110 | 0.9624 | | 0.0348 | 2.0 | 814 | 0.0319 | 0.9911 | | 0.0082 | 3.0 | 1221 | 0.0165 | 0.9966 | | 0.0085 | 4.0 | 1628 | 0.0230 | 0.9957 | | 0.0002 | 5.0 | 2035 | 0.0187 | 0.9966 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0