Safetensors
XiaoduoAILab commited on
Commit
c8cbc51
·
verified ·
1 Parent(s): 58134b5

Upload 23 files

Browse files
instruct/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XModelForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_xmodel.XModelConfig",
7
+ "AutoModelForCausalLM": "modeling_xmodel.XModelForCausalLM"
8
+ },
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 5632,
15
+ "max_position_embeddings": 131072,
16
+ "model_type": "xmodel",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 24,
19
+ "num_key_value_heads": 4,
20
+ "pad_token_id": 0,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 500000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.37.0",
28
+ "use_cache": true,
29
+ "vocab_size": 65280
30
+ }
instruct/configuration_xmodel.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 XiaoDuo AI. All rights reserved.
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+ from typing_extensions import Self
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class XModelConfig(PretrainedConfig):
11
+ model_type = "xmodel"
12
+ keys_to_ignore_at_inference = ["past_key_values"]
13
+
14
+ def __init__(
15
+ self,
16
+ vocab_size=65280,
17
+ hidden_size=4096,
18
+ intermediate_size=None,
19
+ num_hidden_layers=32,
20
+ num_attention_heads=32,
21
+ num_key_value_heads=32,
22
+ hidden_act="silu",
23
+ max_position_embeddings=131072,
24
+ initializer_range=0.02,
25
+ rms_norm_eps=1e-5,
26
+ use_cache=True,
27
+ pad_token_id=0,
28
+ bos_token_id=1,
29
+ eos_token_id=2,
30
+ pretraining_tp=1,
31
+ tie_word_embeddings=False,
32
+ rope_theta=500000.0,
33
+ rope_scaling=None,
34
+ **kwargs,
35
+ ):
36
+ self.vocab_size = vocab_size
37
+ self.max_position_embeddings = max_position_embeddings
38
+ self.hidden_size = hidden_size
39
+ # self.intermediate_size = intermediate_size
40
+ if intermediate_size is None:
41
+ self.intermediate_size = find_multiple(int(8 * hidden_size / 3), 256)
42
+ else:
43
+ self.intermediate_size = intermediate_size
44
+ self.num_hidden_layers = num_hidden_layers
45
+ self.num_attention_heads = num_attention_heads
46
+ self.num_key_value_heads = num_key_value_heads
47
+ self.hidden_act = hidden_act
48
+ self.initializer_range = initializer_range
49
+ self.rms_norm_eps = rms_norm_eps
50
+ self.pretraining_tp = pretraining_tp
51
+ self.use_cache = use_cache
52
+ self.rope_theta = rope_theta
53
+ self.rope_scaling = rope_scaling
54
+ self.auto_map = {
55
+ "AutoConfig": "configuration_xmodel.XModelConfig",
56
+ "AutoModelForCausalLM": "modeling_xmodel.XModelForCausalLM"
57
+ }
58
+
59
+ super().__init__(
60
+ pad_token_id=pad_token_id,
61
+ bos_token_id=bos_token_id,
62
+ eos_token_id=eos_token_id,
63
+ tie_word_embeddings=tie_word_embeddings,
64
+ **kwargs,
65
+ )
66
+
67
+ @classmethod
68
+ def from_name(cls, name: str) -> Self:
69
+ return cls(**xmodel_configs[name])
70
+
71
+
72
+ xmodel_configs = {
73
+ "nano": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=192),
74
+ "micro": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=384),
75
+ "tiny": dict(num_hidden_layers=8, num_attention_heads=8, num_key_value_heads=2, hidden_size=512),
76
+ "small": dict(num_hidden_layers=12, num_attention_heads=12, num_key_value_heads=3, hidden_size=768),
77
+ # GPT-1 & Bert-Base
78
+ "medium": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1024), # Bert-Large
79
+ "large": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1536),
80
+ "xl": dict(num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=4, hidden_size=2048), # GPT-2
81
+ "3B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=4, hidden_size=2560),
82
+ "7B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_size=4096),
83
+ "13B": dict(num_hidden_layers=40, num_attention_heads=40, num_key_value_heads=40, hidden_size=5120),
84
+ "34B": dict(num_hidden_layers=48, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192),
85
+ "70B": dict(num_hidden_layers=80, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192), # Llama
86
+ }
87
+
88
+
89
+ def find_multiple(n: int, k: int) -> int:
90
+ if n % k == 0:
91
+ return n
92
+ return n + k - (n % k)
instruct/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.37.0"
7
+ }
instruct/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d70733e83bba90c555e9d0658531bd4736d801f97c6e8de7bf774f3f0725a22c
3
+ size 4763064424
instruct/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb0e7455c79b47b547ee2fdc234858b873d26419bc3db8fcbc00700d4a60a31f
3
+ size 534773888
instruct/model.safetensors.index.json ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5297810432
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
77
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
87
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
97
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
107
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
117
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
127
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
137
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
147
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
157
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
167
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
177
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
187
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
197
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
207
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
217
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
227
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
237
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
247
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.norm.weight": "model-00001-of-00002.safetensors"
249
+ }
250
+ }
instruct/modeling_xmodel.py ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 XiaoDuo AI. All rights reserved.
2
+
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.utils.checkpoint
8
+ import transformers
9
+ from torch import nn
10
+ from torch.nn import CrossEntropyLoss
11
+ from torch.nn import functional as F
12
+ from transformers.activations import ACT2FN
13
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
14
+ from transformers.utils import logging
15
+
16
+ from .configuration_xmodel import XModelConfig
17
+
18
+ logger = logging.get_logger(__name__)
19
+ torch2 = torch.__version__.split('.')[0] == '2'
20
+
21
+
22
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
23
+ def _make_causal_mask(
24
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
25
+ ):
26
+ """
27
+ Make causal mask used for bi-directional self-attention.
28
+ """
29
+ bsz, tgt_len = input_ids_shape
30
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
31
+ mask_cond = torch.arange(mask.size(-1), device=device)
32
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
33
+ mask = mask.to(dtype)
34
+
35
+ if past_key_values_length > 0:
36
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
37
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
38
+
39
+
40
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
41
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
42
+ """
43
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
44
+ """
45
+ bsz, src_len = mask.size()
46
+ tgt_len = tgt_len if tgt_len is not None else src_len
47
+
48
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
49
+
50
+ inverted_mask = 1.0 - expanded_mask
51
+
52
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
53
+
54
+
55
+ class RMSNorm(nn.Module):
56
+ def __init__(self, hidden_size, eps=1e-6):
57
+ super().__init__()
58
+ self.weight = nn.Parameter(torch.ones(hidden_size))
59
+ self.variance_epsilon = eps
60
+
61
+ def forward(self, hidden_states):
62
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
63
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
64
+
65
+ # convert into half-precision if necessary
66
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
67
+ hidden_states = hidden_states.to(self.weight.dtype)
68
+
69
+ return self.weight * hidden_states
70
+
71
+
72
+ class RotaryEmbedding(torch.nn.Module):
73
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
74
+ super().__init__()
75
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
76
+ self.register_buffer("inv_freq", inv_freq)
77
+
78
+ # Build here to make `torch.jit.trace` work.
79
+ self.max_seq_len_cached = max_position_embeddings
80
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
81
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
82
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
83
+ emb = torch.cat((freqs, freqs), dim=-1)
84
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
85
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
86
+
87
+ def forward(self, x, seq_len=None):
88
+ # x: [bs, num_attention_heads, seq_len, head_size]
89
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
90
+ if seq_len > self.max_seq_len_cached:
91
+ self.max_seq_len_cached = seq_len
92
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
93
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
94
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
95
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
96
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
97
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
98
+ return (
99
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
100
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
101
+ )
102
+
103
+
104
+ def rotate_half(x):
105
+ """Rotates half the hidden dims of the input."""
106
+ x1 = x[..., : x.shape[-1] // 2]
107
+ x2 = x[..., x.shape[-1] // 2:]
108
+ return torch.cat((-x2, x1), dim=-1)
109
+
110
+
111
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
112
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
113
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
114
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
115
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
116
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
117
+ q_embed = (q * cos) + (rotate_half(q) * sin)
118
+ k_embed = (k * cos) + (rotate_half(k) * sin)
119
+ return q_embed, k_embed
120
+
121
+
122
+ class MLP(nn.Module):
123
+ def __init__(
124
+ self,
125
+ hidden_size: int,
126
+ intermediate_size: int,
127
+ hidden_act: str,
128
+ ):
129
+ super().__init__()
130
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
131
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
132
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
133
+ self.act_fn = ACT2FN[hidden_act]
134
+
135
+ def forward(self, x):
136
+ out = self.gate_proj(x)
137
+ out = self.act_fn(out)
138
+ out = out * self.up_proj(x)
139
+ out = self.down_proj(out)
140
+ return out
141
+
142
+
143
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
144
+ """
145
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
146
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
147
+ """
148
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
149
+ if n_rep == 1:
150
+ return hidden_states
151
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
152
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
153
+
154
+
155
+ class Attention(nn.Module):
156
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
157
+
158
+ def __init__(self, config: XModelConfig):
159
+ super().__init__()
160
+ self.config = config
161
+ self.hidden_size = config.hidden_size
162
+ self.num_heads = config.num_attention_heads
163
+ self.head_dim = self.hidden_size // self.num_heads
164
+ self.num_key_value_heads = config.num_key_value_heads
165
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
166
+ self.max_position_embeddings = config.max_position_embeddings
167
+ self.rope_theta = config.rope_theta
168
+
169
+ if (self.head_dim * self.num_heads) != self.hidden_size:
170
+ raise ValueError(
171
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
172
+ f" and `num_heads`: {self.num_heads})."
173
+ )
174
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
175
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
176
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
177
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
178
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings,
179
+ base=self.rope_theta)
180
+
181
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
182
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
183
+
184
+ def forward(
185
+ self,
186
+ hidden_states: torch.Tensor,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ position_ids: Optional[torch.LongTensor] = None,
189
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
190
+ output_attentions: bool = False,
191
+ use_cache: bool = False,
192
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
193
+ bsz, q_len, _ = hidden_states.size()
194
+
195
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
196
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1,
197
+ 2)
198
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1,
199
+ 2)
200
+
201
+ kv_seq_len = key_states.shape[-2]
202
+ if past_key_value is not None:
203
+ kv_seq_len += past_key_value[0].shape[-2]
204
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
205
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
206
+
207
+ if past_key_value is not None:
208
+ # reuse k, v, self_attention
209
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
210
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
211
+
212
+ past_key_value = (key_states, value_states) if use_cache else None
213
+
214
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
215
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
216
+
217
+ if torch2:
218
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
219
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
220
+ attn_mask=attention_mask)
221
+ else:
222
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
223
+
224
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
225
+ raise ValueError(
226
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
227
+ f" {attn_weights.size()}"
228
+ )
229
+
230
+ if attention_mask is not None:
231
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
232
+ raise ValueError(
233
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
234
+ )
235
+ attn_weights = attn_weights + attention_mask
236
+
237
+ # upcast attention to fp32
238
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
239
+ # self.attention_dropout
240
+ attn_weights = nn.functional.dropout(attn_weights, training=self.training)
241
+ attn_output = torch.matmul(attn_weights, value_states)
242
+
243
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
244
+ raise ValueError(
245
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
246
+ f" {attn_output.size()}"
247
+ )
248
+
249
+ attn_output = attn_output.transpose(1, 2)
250
+
251
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
252
+
253
+ attn_output = self.o_proj(attn_output)
254
+
255
+ if not output_attentions:
256
+ attn_weights = None
257
+
258
+ return attn_output, attn_weights, past_key_value
259
+
260
+
261
+ class DecoderLayer(nn.Module):
262
+ def __init__(self, config: XModelConfig):
263
+ super().__init__()
264
+ self.hidden_size = config.hidden_size
265
+ self.self_attn = Attention(config=config)
266
+ self.mlp = MLP(
267
+ hidden_size=self.hidden_size,
268
+ intermediate_size=config.intermediate_size,
269
+ hidden_act=config.hidden_act,
270
+ )
271
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
272
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
273
+
274
+ def forward(
275
+ self,
276
+ hidden_states: torch.Tensor,
277
+ attention_mask: Optional[torch.Tensor] = None,
278
+ position_ids: Optional[torch.LongTensor] = None,
279
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
280
+ output_attentions: Optional[bool] = False,
281
+ use_cache: Optional[bool] = False,
282
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
283
+ """
284
+ Args:
285
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
286
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
287
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
288
+ output_attentions (`bool`, *optional*):
289
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
290
+ returned tensors for more detail.
291
+ use_cache (`bool`, *optional*):
292
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
293
+ (see `past_key_values`).
294
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
295
+ """
296
+
297
+ residual = hidden_states
298
+
299
+ hidden_states = self.input_layernorm(hidden_states)
300
+
301
+ # Self Attention
302
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
303
+ hidden_states=hidden_states,
304
+ attention_mask=attention_mask,
305
+ position_ids=position_ids,
306
+ past_key_value=past_key_value,
307
+ output_attentions=output_attentions,
308
+ use_cache=use_cache,
309
+ )
310
+ hidden_states = residual + hidden_states
311
+
312
+ # Fully Connected
313
+ residual = hidden_states
314
+ hidden_states = self.post_attention_layernorm(hidden_states)
315
+ hidden_states = self.mlp(hidden_states)
316
+ hidden_states = residual + hidden_states
317
+
318
+ outputs = (hidden_states,)
319
+
320
+ if output_attentions:
321
+ outputs += (self_attn_weights,)
322
+
323
+ if use_cache:
324
+ outputs += (present_key_value,)
325
+
326
+ return outputs
327
+
328
+
329
+ class PreTrainedModel(transformers.PreTrainedModel):
330
+ config_class = XModelConfig
331
+ base_model_prefix = "model"
332
+ supports_gradient_checkpointing = True
333
+ _no_split_modules = ["DecoderLayer"]
334
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
335
+
336
+ def _init_weights(self, module):
337
+ std = self.config.initializer_range
338
+ if isinstance(module, nn.Linear):
339
+ module.weight.data.normal_(mean=0.0, std=std)
340
+ if module.bias is not None:
341
+ module.bias.data.zero_()
342
+ elif isinstance(module, nn.Embedding):
343
+ module.weight.data.normal_(mean=0.0, std=std)
344
+ if module.padding_idx is not None:
345
+ module.weight.data[module.padding_idx].zero_()
346
+
347
+ def _set_gradient_checkpointing(self, module, value=False):
348
+ if isinstance(module, Model):
349
+ module.gradient_checkpointing = value
350
+
351
+
352
+ class Model(PreTrainedModel):
353
+ """
354
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`]
355
+
356
+ Args:
357
+ config: XModelConfig
358
+ """
359
+
360
+ def __init__(self, config: XModelConfig):
361
+ super().__init__(config)
362
+ self.padding_idx = config.pad_token_id
363
+ self.vocab_size = config.vocab_size
364
+
365
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
366
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
367
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+
369
+ self.gradient_checkpointing = False
370
+ # Initialize weights and apply final processing
371
+ self.post_init()
372
+
373
+ def get_input_embeddings(self):
374
+ return self.embed_tokens
375
+
376
+ def set_input_embeddings(self, value):
377
+ self.embed_tokens = value
378
+
379
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
380
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
381
+ # create causal mask
382
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
383
+ combined_attention_mask = None
384
+ if input_shape[-1] > 1:
385
+ combined_attention_mask = _make_causal_mask(
386
+ input_shape,
387
+ inputs_embeds.dtype,
388
+ device=inputs_embeds.device,
389
+ past_key_values_length=past_key_values_length,
390
+ )
391
+
392
+ if attention_mask is not None:
393
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
394
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
395
+ inputs_embeds.device
396
+ )
397
+ combined_attention_mask = (
398
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
399
+ )
400
+
401
+ return combined_attention_mask
402
+
403
+ def forward(
404
+ self,
405
+ input_ids: torch.LongTensor = None,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
409
+ inputs_embeds: Optional[torch.FloatTensor] = None,
410
+ use_cache: Optional[bool] = None,
411
+ output_attentions: Optional[bool] = None,
412
+ output_hidden_states: Optional[bool] = None,
413
+ return_dict: Optional[bool] = None,
414
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
415
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
416
+ output_hidden_states = (
417
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
418
+ )
419
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
420
+
421
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
422
+
423
+ # retrieve input_ids and inputs_embeds
424
+ if input_ids is not None and inputs_embeds is not None:
425
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
426
+ elif input_ids is not None:
427
+ batch_size, seq_length = input_ids.shape
428
+ elif inputs_embeds is not None:
429
+ batch_size, seq_length, _ = inputs_embeds.shape
430
+ else:
431
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
432
+
433
+ seq_length_with_past = seq_length
434
+ past_key_values_length = 0
435
+
436
+ if past_key_values is not None:
437
+ past_key_values_length = past_key_values[0][0].shape[2]
438
+ seq_length_with_past = seq_length_with_past + past_key_values_length
439
+
440
+ if position_ids is None:
441
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
442
+ position_ids = torch.arange(
443
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
444
+ )
445
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
446
+ else:
447
+ position_ids = position_ids.view(-1, seq_length).long()
448
+
449
+ if inputs_embeds is None:
450
+ inputs_embeds = self.embed_tokens(input_ids)
451
+ # embed positions
452
+ if attention_mask is None:
453
+ attention_mask = torch.ones(
454
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
455
+ )
456
+ attention_mask = self._prepare_decoder_attention_mask(
457
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
458
+ )
459
+
460
+ hidden_states = inputs_embeds
461
+
462
+ if self.gradient_checkpointing and self.training:
463
+ if use_cache:
464
+ logger.warning_once(
465
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
466
+ )
467
+ use_cache = False
468
+
469
+ # decoder layers
470
+ all_hidden_states = () if output_hidden_states else None
471
+ all_self_attns = () if output_attentions else None
472
+ next_decoder_cache = () if use_cache else None
473
+
474
+ for idx, decoder_layer in enumerate(self.layers):
475
+ if output_hidden_states:
476
+ all_hidden_states += (hidden_states,)
477
+
478
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
479
+
480
+ if self.gradient_checkpointing and self.training:
481
+
482
+ def create_custom_forward(module):
483
+ def custom_forward(*inputs):
484
+ # None for past_key_value
485
+ return module(*inputs, output_attentions, None)
486
+
487
+ return custom_forward
488
+
489
+ layer_outputs = torch.utils.checkpoint.checkpoint(
490
+ create_custom_forward(decoder_layer),
491
+ hidden_states,
492
+ attention_mask,
493
+ position_ids,
494
+ None,
495
+ )
496
+ else:
497
+ layer_outputs = decoder_layer(
498
+ hidden_states,
499
+ attention_mask=attention_mask,
500
+ position_ids=position_ids,
501
+ past_key_value=past_key_value,
502
+ output_attentions=output_attentions,
503
+ use_cache=use_cache,
504
+ )
505
+ # print('debug_attention_mask', type(attention_mask),attention_mask.dtype)
506
+ # print('debug_position_ids', type(position_ids),position_ids.dtype)
507
+ hidden_states = layer_outputs[0]
508
+
509
+ if use_cache:
510
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
511
+
512
+ if output_attentions:
513
+ all_self_attns += (layer_outputs[1],)
514
+
515
+ hidden_states = self.norm(hidden_states)
516
+
517
+ # add hidden states from the last decoder layer
518
+ if output_hidden_states:
519
+ all_hidden_states += (hidden_states,)
520
+
521
+ next_cache = next_decoder_cache if use_cache else None
522
+ if not return_dict:
523
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
524
+ return BaseModelOutputWithPast(
525
+ last_hidden_state=hidden_states,
526
+ past_key_values=next_cache,
527
+ hidden_states=all_hidden_states,
528
+ attentions=all_self_attns,
529
+ )
530
+
531
+
532
+ class XModelForCausalLM(PreTrainedModel):
533
+ def __init__(self, config):
534
+ super().__init__(config)
535
+ self.model = Model(config)
536
+
537
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
538
+
539
+ # Initialize weights and apply final processing
540
+ self.post_init()
541
+
542
+ def get_input_embeddings(self):
543
+ return self.model.embed_tokens
544
+
545
+ def set_input_embeddings(self, value):
546
+ self.model.embed_tokens = value
547
+
548
+ def get_output_embeddings(self):
549
+ return self.lm_head
550
+
551
+ def set_output_embeddings(self, new_embeddings):
552
+ self.lm_head = new_embeddings
553
+
554
+ def set_decoder(self, decoder):
555
+ self.model = decoder
556
+
557
+ def get_decoder(self):
558
+ return self.model
559
+
560
+ def forward(
561
+ self,
562
+ input_ids: torch.LongTensor = None,
563
+ attention_mask: Optional[torch.Tensor] = None,
564
+ position_ids: Optional[torch.LongTensor] = None,
565
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
566
+ inputs_embeds: Optional[torch.FloatTensor] = None,
567
+ labels: Optional[torch.LongTensor] = None,
568
+ use_cache: Optional[bool] = None,
569
+ output_attentions: Optional[bool] = None,
570
+ output_hidden_states: Optional[bool] = None,
571
+ return_dict: Optional[bool] = None,
572
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
573
+ r"""
574
+ Args:
575
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
576
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
577
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
578
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
579
+
580
+ Returns:
581
+
582
+ Example:
583
+
584
+ ```python
585
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
586
+
587
+ >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
588
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
589
+
590
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
591
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
592
+
593
+ >>> # Generate
594
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
595
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
596
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
597
+ ```"""
598
+
599
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
600
+ output_hidden_states = (
601
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
602
+ )
603
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
604
+
605
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
606
+ outputs = self.model(
607
+ input_ids=input_ids,
608
+ attention_mask=attention_mask,
609
+ position_ids=position_ids,
610
+ past_key_values=past_key_values,
611
+ inputs_embeds=inputs_embeds,
612
+ use_cache=use_cache,
613
+ output_attentions=output_attentions,
614
+ output_hidden_states=output_hidden_states,
615
+ return_dict=return_dict,
616
+ )
617
+
618
+ hidden_states = outputs[0]
619
+ logits = self.lm_head(hidden_states)
620
+
621
+ loss = None
622
+ if labels is not None:
623
+ # Shift so that tokens < n predict n
624
+ shift_logits = logits[..., :-1, :].contiguous()
625
+ shift_labels = labels[..., 1:].contiguous()
626
+ # Flatten the tokens
627
+ loss_fct = CrossEntropyLoss()
628
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
629
+ shift_labels = shift_labels.view(-1)
630
+ # Enable model parallelism
631
+ shift_labels = shift_labels.to(shift_logits.device)
632
+ loss = loss_fct(shift_logits, shift_labels)
633
+
634
+ if not return_dict:
635
+ output = (logits,) + outputs[1:]
636
+ return (loss,) + output if loss is not None else output
637
+
638
+ return CausalLMOutputWithPast(
639
+ loss=loss,
640
+ logits=logits,
641
+ past_key_values=outputs.past_key_values,
642
+ hidden_states=outputs.hidden_states,
643
+ attentions=outputs.attentions,
644
+ )
645
+
646
+ def prepare_inputs_for_generation(
647
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
648
+ ):
649
+ if past_key_values:
650
+ input_ids = input_ids[:, -1:]
651
+
652
+ position_ids = kwargs.get("position_ids", None)
653
+ if attention_mask is not None and position_ids is None:
654
+ # create position_ids on the fly for batch generation
655
+ position_ids = attention_mask.long().cumsum(-1) - 1
656
+ position_ids.masked_fill_(attention_mask == 0, 1)
657
+ if past_key_values:
658
+ position_ids = position_ids[:, -1].unsqueeze(-1)
659
+
660
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
661
+ if inputs_embeds is not None and past_key_values is None:
662
+ model_inputs = {"inputs_embeds": inputs_embeds}
663
+ else:
664
+ model_inputs = {"input_ids": input_ids}
665
+
666
+ model_inputs.update(
667
+ {
668
+ "position_ids": position_ids,
669
+ "past_key_values": past_key_values,
670
+ "use_cache": kwargs.get("use_cache"),
671
+ "attention_mask": attention_mask,
672
+ }
673
+ )
674
+ return model_inputs
675
+
676
+ @staticmethod
677
+ def _reorder_cache(past_key_values, beam_idx):
678
+ reordered_past = ()
679
+ for layer_past in past_key_values:
680
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
681
+ return reordered_past
682
+
683
+ def get_num_params(self, non_embedding=True):
684
+ """
685
+ Return the number of parameters in the model.
686
+ For non-embedding count (default), the position embeddings get subtracted.
687
+ The token embeddings would too, except due to the parameter sharing these
688
+ params are actually used as weights in the final layer, so we include them.
689
+ """
690
+ n_params = sum(p.numel() for p in self.parameters())
691
+ # if non_embedding:
692
+ # n_params -= self.transformer.wte.weight.numel()
693
+ return n_params
694
+
695
+ def estimate_mfu(self, fwdbwd_per_iter, dt, max_length=None, device_model='A100', dtype='float32'):
696
+ """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
697
+ # first estimate the number of flops we do per iteration.
698
+ # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
699
+ N = self.get_num_params()
700
+ n_layer = self.config.num_hidden_layers
701
+ n_head = self.config.num_attention_heads
702
+ n_embd = self.config.hidden_size
703
+
704
+ if max_length is None:
705
+ max_length = self.config.max_position_embeddings
706
+
707
+ L, H, Q, T = n_layer, n_head, n_embd // n_head, max_length
708
+ flops_per_token = 6 * N + 12 * L * H * Q * T
709
+ flops_per_fwdbwd = flops_per_token * T
710
+ flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
711
+ # express our flops throughput as ratio of A100 bfloat16 peak flops
712
+ flops_achieved = flops_per_iter * (1.0 / dt) # per second
713
+
714
+ if device_model is None:
715
+ device_model = torch.cuda.get_device_name(0)
716
+
717
+ flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
718
+ if device_model == 'DCU' and dtype == 'float16':
719
+ flops_promised = 23.6e12
720
+ elif device_model == 'DCU' and dtype == 'float32':
721
+ flops_promised = 11.8e12
722
+ elif device_model == 'NVIDIA V100' or 'V100' in device_model:
723
+ flops_promised = 28e12
724
+ elif device_model == 'NVIDIA H100' or 'H100' in device_model or device_model == 'NVIDIA H800' or 'H800' in device_model:
725
+ flops_promised = 1513e12
726
+
727
+ mfu = flops_achieved / flops_promised
728
+ return flops_achieved, mfu
729
+
730
+ def flops_per_token(self, max_length=None, non_embedding=False):
731
+ N = self.get_num_params()
732
+ if non_embedding:
733
+ N -= self.config.vocab_size * self.config.hidden_size * 2
734
+ n_layer = self.config.num_hidden_layers
735
+ n_head = self.config.num_attention_heads
736
+ n_embd = self.config.hidden_size
737
+ if max_length is None:
738
+ max_length = self.config.max_position_embeddings
739
+ L, H, Q, T = n_layer, n_head, n_embd // n_head, max_length
740
+ flops_per_token = 6 * N + 12 * L * H * Q * T
741
+ return flops_per_token
instruct/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
instruct/tokenization_xmodel.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import os
22
+ from shutil import copyfile
23
+ from typing import Any, Dict, List, Optional, Tuple
24
+
25
+ import sentencepiece as spm
26
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
27
+ from transformers.utils import logging
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {"vocab_file": "xmodel_65280.model"}
32
+
33
+ PRETRAINED_VOCAB_FILES_MAP = {
34
+ "vocab_file": {},
35
+ "tokenizer_file": {},
36
+ }
37
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
38
+
39
+
40
+ class XModelTokenizer(PreTrainedTokenizer):
41
+ """
42
+ Construct a XModel tokenizer. Based on byte-level Byte-Pair-Encoding.
43
+
44
+ Args:
45
+ vocab_file (`str`):
46
+ Path to the vocabulary file.
47
+ """
48
+
49
+ vocab_files_names = VOCAB_FILES_NAMES
50
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
51
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
52
+ model_input_names = ["input_ids", "attention_mask"]
53
+
54
+ def __init__(
55
+ self,
56
+ vocab_file,
57
+ unk_token="<unk>",
58
+ bos_token="<s>",
59
+ eos_token="</s>",
60
+ pad_token=None,
61
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
62
+ add_bos_token=True,
63
+ add_eos_token=False,
64
+ clean_up_tokenization_spaces=False,
65
+ **kwargs,
66
+ ):
67
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
68
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
69
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
70
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
71
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
72
+ self.vocab_file = vocab_file
73
+ self.add_bos_token = add_bos_token
74
+ self.add_eos_token = add_eos_token
75
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
76
+ self.sp_model.Load(vocab_file)
77
+ super().__init__(
78
+ bos_token=bos_token,
79
+ eos_token=eos_token,
80
+ unk_token=unk_token,
81
+ pad_token=pad_token,
82
+ add_bos_token=add_bos_token,
83
+ add_eos_token=add_eos_token,
84
+ sp_model_kwargs=self.sp_model_kwargs,
85
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
86
+ **kwargs,
87
+ )
88
+
89
+ def __getstate__(self):
90
+ state = self.__dict__.copy()
91
+ state["sp_model"] = None
92
+ return state
93
+
94
+ def __setstate__(self, d):
95
+ self.__dict__ = d
96
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
97
+ self.sp_model.Load(self.vocab_file)
98
+
99
+ @property
100
+ def vocab_size(self):
101
+ """Returns vocab size"""
102
+ return self.sp_model.get_piece_size()
103
+
104
+ def get_vocab(self):
105
+ """Returns vocab as a dict"""
106
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
107
+ vocab.update(self.added_tokens_encoder)
108
+ return vocab
109
+
110
+ def _tokenize(self, text):
111
+ """Returns a tokenized string."""
112
+ return self.sp_model.encode(text, out_type=str)
113
+
114
+ def _convert_token_to_id(self, token):
115
+ """Converts a token (str) in an id using the vocab."""
116
+ return self.sp_model.piece_to_id(token)
117
+
118
+ def _convert_id_to_token(self, index):
119
+ """Converts an index (integer) in a token (str) using the vocab."""
120
+ token = self.sp_model.IdToPiece(index)
121
+ return token
122
+
123
+ def convert_tokens_to_string(self, tokens):
124
+ """Converts a sequence of tokens (string) in a single string."""
125
+ current_sub_tokens = []
126
+ out_string = ""
127
+ prev_is_special = False
128
+ for i, token in enumerate(tokens):
129
+ # make sure that special tokens are not decoded using sentencepiece model
130
+ if token in self.all_special_tokens:
131
+ if not prev_is_special and i != 0:
132
+ out_string += " "
133
+ out_string += self.sp_model.decode(current_sub_tokens) + token
134
+ prev_is_special = True
135
+ current_sub_tokens = []
136
+ else:
137
+ current_sub_tokens.append(token)
138
+ prev_is_special = False
139
+ out_string += self.sp_model.decode(current_sub_tokens)
140
+ return out_string
141
+
142
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
143
+ """
144
+ Save the vocabulary and special tokens file to a directory.
145
+
146
+ Args:
147
+ save_directory (`str`):
148
+ The directory in which to save the vocabulary.
149
+
150
+ Returns:
151
+ `Tuple(str)`: Paths to the files saved.
152
+ """
153
+ if not os.path.isdir(save_directory):
154
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
155
+ return
156
+ out_vocab_file = os.path.join(
157
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
158
+ )
159
+
160
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
161
+ copyfile(self.vocab_file, out_vocab_file)
162
+ elif not os.path.isfile(self.vocab_file):
163
+ with open(out_vocab_file, "wb") as fi:
164
+ content_spiece_model = self.sp_model.serialized_model_proto()
165
+ fi.write(content_spiece_model)
166
+
167
+ return (out_vocab_file,)
168
+
169
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
170
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
171
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
172
+
173
+ output = bos_token_id + token_ids_0 + eos_token_id
174
+
175
+ if token_ids_1 is not None:
176
+ output = output + bos_token_id + token_ids_1 + eos_token_id
177
+
178
+ return output
179
+
180
+ def get_special_tokens_mask(
181
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
182
+ already_has_special_tokens: bool = False
183
+ ) -> List[int]:
184
+ """
185
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
186
+ special tokens using the tokenizer `prepare_for_model` method.
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
194
+ Whether or not the token list is already formatted with special tokens for the model.
195
+
196
+ Returns:
197
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
198
+ """
199
+ if already_has_special_tokens:
200
+ return super().get_special_tokens_mask(
201
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
202
+ )
203
+
204
+ bos_token_id = [1] if self.add_bos_token else []
205
+ eos_token_id = [1] if self.add_eos_token else []
206
+
207
+ if token_ids_1 is None:
208
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
209
+ return (
210
+ bos_token_id
211
+ + ([0] * len(token_ids_0))
212
+ + eos_token_id
213
+ + bos_token_id
214
+ + ([0] * len(token_ids_1))
215
+ + eos_token_id
216
+ )
217
+
218
+ def create_token_type_ids_from_sequences(
219
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
220
+ ) -> List[int]:
221
+ """
222
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
223
+ sequence pair mask has the following format:
224
+
225
+ ```
226
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
227
+ | first sequence | second sequence |
228
+ ```
229
+
230
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
231
+
232
+ Args:
233
+ token_ids_0 (`List[int]`):
234
+ List of ids.
235
+ token_ids_1 (`List[int]`, *optional*):
236
+ Optional second list of IDs for sequence pairs.
237
+
238
+ Returns:
239
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
240
+ """
241
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
242
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
243
+
244
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
245
+
246
+ if token_ids_1 is not None:
247
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
248
+
249
+ return output
instruct/tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "auto_map": {
31
+ "AutoTokenizer": [
32
+ "tokenization_xmodel.XModelTokenizer",
33
+ null
34
+ ]
35
+ },
36
+ "bos_token": "<s>",
37
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- elif message.role == \"document\" %}\n {{- '<|im_start|>document\\n' + message.content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
38
+ "clean_up_tokenization_spaces": false,
39
+ "eos_token": "</s>",
40
+ "model_max_length": 4096,
41
+ "pad_token": "</s>",
42
+ "padding_side": "right",
43
+ "sp_model_kwargs": {},
44
+ "tokenizer_class": "XModelTokenizer",
45
+ "unk_token": "<unk>"
46
+ }
instruct/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
instruct/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e65dab84516b36cd9ace95352792f9c1721a133f9ab816a9dd383bb71f2fdf3
3
+ size 4920
instruct/xmodel_65280.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3d91965878687648480d3e4dfedb5c66600b1612559e4579cdba76934b7d47e
3
+ size 1091044
pretrain/ckpt.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7794cdfe7c4526344efa9200e6ac448896b9c2d7e04d85bbfbcfc9cd41a974fd
3
+ size 3604
pretrain/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "out_f_line/xl_f_line/iter-0550000",
3
+ "architectures": [
4
+ "XModelForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_xmodel.XModelConfig",
8
+ "AutoModelForCausalLM": "modeling_xmodel.XModelForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 2048,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 5632,
16
+ "max_position_embeddings": 131072,
17
+ "model_type": "xmodel",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 24,
20
+ "num_key_value_heads": 4,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "rope_theta": 500000.0,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.37.2",
29
+ "use_cache": true,
30
+ "vocab_size": 65280
31
+ }
pretrain/configuration_xmodel.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 XiaoDuo AI. All rights reserved.
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+ from typing_extensions import Self
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class XModelConfig(PretrainedConfig):
11
+ model_type = "xmodel"
12
+ keys_to_ignore_at_inference = ["past_key_values"]
13
+
14
+ def __init__(
15
+ self,
16
+ vocab_size=65280,
17
+ hidden_size=4096,
18
+ intermediate_size=None,
19
+ num_hidden_layers=32,
20
+ num_attention_heads=32,
21
+ num_key_value_heads=32,
22
+ hidden_act="silu",
23
+ max_position_embeddings=131072,
24
+ initializer_range=0.02,
25
+ rms_norm_eps=1e-5,
26
+ use_cache=True,
27
+ pad_token_id=0,
28
+ bos_token_id=1,
29
+ eos_token_id=2,
30
+ pretraining_tp=1,
31
+ tie_word_embeddings=False,
32
+ rope_theta=500000.0,
33
+ rope_scaling=None,
34
+ **kwargs,
35
+ ):
36
+ self.vocab_size = vocab_size
37
+ self.max_position_embeddings = max_position_embeddings
38
+ self.hidden_size = hidden_size
39
+ # self.intermediate_size = intermediate_size
40
+ if intermediate_size is None:
41
+ self.intermediate_size = find_multiple(int(8 * hidden_size / 3), 256)
42
+ else:
43
+ self.intermediate_size = intermediate_size
44
+ self.num_hidden_layers = num_hidden_layers
45
+ self.num_attention_heads = num_attention_heads
46
+ self.num_key_value_heads = num_key_value_heads
47
+ self.hidden_act = hidden_act
48
+ self.initializer_range = initializer_range
49
+ self.rms_norm_eps = rms_norm_eps
50
+ self.pretraining_tp = pretraining_tp
51
+ self.use_cache = use_cache
52
+ self.rope_theta = rope_theta
53
+ self.rope_scaling = rope_scaling
54
+ self.auto_map = {
55
+ "AutoConfig": "configuration_xmodel.XModelConfig",
56
+ "AutoModelForCausalLM": "modeling_xmodel.XModelForCausalLM"
57
+ }
58
+
59
+ super().__init__(
60
+ pad_token_id=pad_token_id,
61
+ bos_token_id=bos_token_id,
62
+ eos_token_id=eos_token_id,
63
+ tie_word_embeddings=tie_word_embeddings,
64
+ **kwargs,
65
+ )
66
+
67
+ @classmethod
68
+ def from_name(cls, name: str) -> Self:
69
+ return cls(**xmodel_configs[name])
70
+
71
+
72
+ xmodel_configs = {
73
+ "nano": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=192),
74
+ "micro": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=384),
75
+ "tiny": dict(num_hidden_layers=8, num_attention_heads=8, num_key_value_heads=2, hidden_size=512),
76
+ "small": dict(num_hidden_layers=12, num_attention_heads=12, num_key_value_heads=3, hidden_size=768),
77
+ # GPT-1 & Bert-Base
78
+ "medium": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1024), # Bert-Large
79
+ "large": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1536),
80
+ "xl": dict(num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=4, hidden_size=2048), # GPT-2
81
+ "3B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=4, hidden_size=2560),
82
+ "7B": dict(num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_size=4096),
83
+ "13B": dict(num_hidden_layers=40, num_attention_heads=40, num_key_value_heads=40, hidden_size=5120),
84
+ "34B": dict(num_hidden_layers=48, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192),
85
+ "70B": dict(num_hidden_layers=80, num_attention_heads=64, num_key_value_heads=8, hidden_size=8192), # Llama
86
+ }
87
+
88
+
89
+ def find_multiple(n: int, k: int) -> int:
90
+ if n % k == 0:
91
+ return n
92
+ return n + k - (n % k)
pretrain/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.37.2"
7
+ }
pretrain/modeling_xmodel.py ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 XiaoDuo AI. All rights reserved.
2
+
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.utils.checkpoint
8
+ import transformers
9
+ from torch import nn
10
+ from torch.nn import CrossEntropyLoss
11
+ from torch.nn import functional as F
12
+ from transformers.activations import ACT2FN
13
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
14
+ from transformers.utils import logging
15
+
16
+ from .configuration_xmodel import XModelConfig
17
+
18
+ logger = logging.get_logger(__name__)
19
+ torch2 = torch.__version__.split('.')[0] == '2'
20
+
21
+
22
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
23
+ def _make_causal_mask(
24
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
25
+ ):
26
+ """
27
+ Make causal mask used for bi-directional self-attention.
28
+ """
29
+ bsz, tgt_len = input_ids_shape
30
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
31
+ mask_cond = torch.arange(mask.size(-1), device=device)
32
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
33
+ mask = mask.to(dtype)
34
+
35
+ if past_key_values_length > 0:
36
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
37
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
38
+
39
+
40
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
41
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
42
+ """
43
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
44
+ """
45
+ bsz, src_len = mask.size()
46
+ tgt_len = tgt_len if tgt_len is not None else src_len
47
+
48
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
49
+
50
+ inverted_mask = 1.0 - expanded_mask
51
+
52
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
53
+
54
+
55
+ class RMSNorm(nn.Module):
56
+ def __init__(self, hidden_size, eps=1e-6):
57
+ super().__init__()
58
+ self.weight = nn.Parameter(torch.ones(hidden_size))
59
+ self.variance_epsilon = eps
60
+
61
+ def forward(self, hidden_states):
62
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
63
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
64
+
65
+ # convert into half-precision if necessary
66
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
67
+ hidden_states = hidden_states.to(self.weight.dtype)
68
+
69
+ return self.weight * hidden_states
70
+
71
+
72
+ class RotaryEmbedding(torch.nn.Module):
73
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
74
+ super().__init__()
75
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
76
+ self.register_buffer("inv_freq", inv_freq)
77
+
78
+ # Build here to make `torch.jit.trace` work.
79
+ self.max_seq_len_cached = max_position_embeddings
80
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
81
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
82
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
83
+ emb = torch.cat((freqs, freqs), dim=-1)
84
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
85
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
86
+
87
+ def forward(self, x, seq_len=None):
88
+ # x: [bs, num_attention_heads, seq_len, head_size]
89
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
90
+ if seq_len > self.max_seq_len_cached:
91
+ self.max_seq_len_cached = seq_len
92
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
93
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
94
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
95
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
96
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
97
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
98
+ return (
99
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
100
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
101
+ )
102
+
103
+
104
+ def rotate_half(x):
105
+ """Rotates half the hidden dims of the input."""
106
+ x1 = x[..., : x.shape[-1] // 2]
107
+ x2 = x[..., x.shape[-1] // 2:]
108
+ return torch.cat((-x2, x1), dim=-1)
109
+
110
+
111
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
112
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
113
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
114
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
115
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
116
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
117
+ q_embed = (q * cos) + (rotate_half(q) * sin)
118
+ k_embed = (k * cos) + (rotate_half(k) * sin)
119
+ return q_embed, k_embed
120
+
121
+
122
+ class MLP(nn.Module):
123
+ def __init__(
124
+ self,
125
+ hidden_size: int,
126
+ intermediate_size: int,
127
+ hidden_act: str,
128
+ ):
129
+ super().__init__()
130
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
131
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
132
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
133
+ self.act_fn = ACT2FN[hidden_act]
134
+
135
+ def forward(self, x):
136
+ out = self.gate_proj(x)
137
+ out = self.act_fn(out)
138
+ out = out * self.up_proj(x)
139
+ out = self.down_proj(out)
140
+ return out
141
+
142
+
143
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
144
+ """
145
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
146
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
147
+ """
148
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
149
+ if n_rep == 1:
150
+ return hidden_states
151
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
152
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
153
+
154
+
155
+ class Attention(nn.Module):
156
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
157
+
158
+ def __init__(self, config: XModelConfig):
159
+ super().__init__()
160
+ self.config = config
161
+ self.hidden_size = config.hidden_size
162
+ self.num_heads = config.num_attention_heads
163
+ self.head_dim = self.hidden_size // self.num_heads
164
+ self.num_key_value_heads = config.num_key_value_heads
165
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
166
+ self.max_position_embeddings = config.max_position_embeddings
167
+ self.rope_theta = config.rope_theta
168
+
169
+ if (self.head_dim * self.num_heads) != self.hidden_size:
170
+ raise ValueError(
171
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
172
+ f" and `num_heads`: {self.num_heads})."
173
+ )
174
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
175
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
176
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
177
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
178
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings,
179
+ base=self.rope_theta)
180
+
181
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
182
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
183
+
184
+ def forward(
185
+ self,
186
+ hidden_states: torch.Tensor,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ position_ids: Optional[torch.LongTensor] = None,
189
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
190
+ output_attentions: bool = False,
191
+ use_cache: bool = False,
192
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
193
+ bsz, q_len, _ = hidden_states.size()
194
+
195
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
196
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1,
197
+ 2)
198
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1,
199
+ 2)
200
+
201
+ kv_seq_len = key_states.shape[-2]
202
+ if past_key_value is not None:
203
+ kv_seq_len += past_key_value[0].shape[-2]
204
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
205
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
206
+
207
+ if past_key_value is not None:
208
+ # reuse k, v, self_attention
209
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
210
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
211
+
212
+ past_key_value = (key_states, value_states) if use_cache else None
213
+
214
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
215
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
216
+
217
+ if torch2:
218
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
219
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
220
+ attn_mask=attention_mask)
221
+ else:
222
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
223
+
224
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
225
+ raise ValueError(
226
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
227
+ f" {attn_weights.size()}"
228
+ )
229
+
230
+ if attention_mask is not None:
231
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
232
+ raise ValueError(
233
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
234
+ )
235
+ attn_weights = attn_weights + attention_mask
236
+
237
+ # upcast attention to fp32
238
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
239
+ # self.attention_dropout
240
+ attn_weights = nn.functional.dropout(attn_weights, training=self.training)
241
+ attn_output = torch.matmul(attn_weights, value_states)
242
+
243
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
244
+ raise ValueError(
245
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
246
+ f" {attn_output.size()}"
247
+ )
248
+
249
+ attn_output = attn_output.transpose(1, 2)
250
+
251
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
252
+
253
+ attn_output = self.o_proj(attn_output)
254
+
255
+ if not output_attentions:
256
+ attn_weights = None
257
+
258
+ return attn_output, attn_weights, past_key_value
259
+
260
+
261
+ class DecoderLayer(nn.Module):
262
+ def __init__(self, config: XModelConfig):
263
+ super().__init__()
264
+ self.hidden_size = config.hidden_size
265
+ self.self_attn = Attention(config=config)
266
+ self.mlp = MLP(
267
+ hidden_size=self.hidden_size,
268
+ intermediate_size=config.intermediate_size,
269
+ hidden_act=config.hidden_act,
270
+ )
271
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
272
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
273
+
274
+ def forward(
275
+ self,
276
+ hidden_states: torch.Tensor,
277
+ attention_mask: Optional[torch.Tensor] = None,
278
+ position_ids: Optional[torch.LongTensor] = None,
279
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
280
+ output_attentions: Optional[bool] = False,
281
+ use_cache: Optional[bool] = False,
282
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
283
+ """
284
+ Args:
285
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
286
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
287
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
288
+ output_attentions (`bool`, *optional*):
289
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
290
+ returned tensors for more detail.
291
+ use_cache (`bool`, *optional*):
292
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
293
+ (see `past_key_values`).
294
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
295
+ """
296
+
297
+ residual = hidden_states
298
+
299
+ hidden_states = self.input_layernorm(hidden_states)
300
+
301
+ # Self Attention
302
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
303
+ hidden_states=hidden_states,
304
+ attention_mask=attention_mask,
305
+ position_ids=position_ids,
306
+ past_key_value=past_key_value,
307
+ output_attentions=output_attentions,
308
+ use_cache=use_cache,
309
+ )
310
+ hidden_states = residual + hidden_states
311
+
312
+ # Fully Connected
313
+ residual = hidden_states
314
+ hidden_states = self.post_attention_layernorm(hidden_states)
315
+ hidden_states = self.mlp(hidden_states)
316
+ hidden_states = residual + hidden_states
317
+
318
+ outputs = (hidden_states,)
319
+
320
+ if output_attentions:
321
+ outputs += (self_attn_weights,)
322
+
323
+ if use_cache:
324
+ outputs += (present_key_value,)
325
+
326
+ return outputs
327
+
328
+
329
+ class PreTrainedModel(transformers.PreTrainedModel):
330
+ config_class = XModelConfig
331
+ base_model_prefix = "model"
332
+ supports_gradient_checkpointing = True
333
+ _no_split_modules = ["DecoderLayer"]
334
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
335
+
336
+ def _init_weights(self, module):
337
+ std = self.config.initializer_range
338
+ if isinstance(module, nn.Linear):
339
+ module.weight.data.normal_(mean=0.0, std=std)
340
+ if module.bias is not None:
341
+ module.bias.data.zero_()
342
+ elif isinstance(module, nn.Embedding):
343
+ module.weight.data.normal_(mean=0.0, std=std)
344
+ if module.padding_idx is not None:
345
+ module.weight.data[module.padding_idx].zero_()
346
+
347
+ def _set_gradient_checkpointing(self, module, value=False):
348
+ if isinstance(module, Model):
349
+ module.gradient_checkpointing = value
350
+
351
+
352
+ class Model(PreTrainedModel):
353
+ """
354
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`]
355
+
356
+ Args:
357
+ config: XModelConfig
358
+ """
359
+
360
+ def __init__(self, config: XModelConfig):
361
+ super().__init__(config)
362
+ self.padding_idx = config.pad_token_id
363
+ self.vocab_size = config.vocab_size
364
+
365
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
366
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
367
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+
369
+ self.gradient_checkpointing = False
370
+ # Initialize weights and apply final processing
371
+ self.post_init()
372
+
373
+ def get_input_embeddings(self):
374
+ return self.embed_tokens
375
+
376
+ def set_input_embeddings(self, value):
377
+ self.embed_tokens = value
378
+
379
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
380
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
381
+ # create causal mask
382
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
383
+ combined_attention_mask = None
384
+ if input_shape[-1] > 1:
385
+ combined_attention_mask = _make_causal_mask(
386
+ input_shape,
387
+ inputs_embeds.dtype,
388
+ device=inputs_embeds.device,
389
+ past_key_values_length=past_key_values_length,
390
+ )
391
+
392
+ if attention_mask is not None:
393
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
394
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
395
+ inputs_embeds.device
396
+ )
397
+ combined_attention_mask = (
398
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
399
+ )
400
+
401
+ return combined_attention_mask
402
+
403
+ def forward(
404
+ self,
405
+ input_ids: torch.LongTensor = None,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
409
+ inputs_embeds: Optional[torch.FloatTensor] = None,
410
+ use_cache: Optional[bool] = None,
411
+ output_attentions: Optional[bool] = None,
412
+ output_hidden_states: Optional[bool] = None,
413
+ return_dict: Optional[bool] = None,
414
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
415
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
416
+ output_hidden_states = (
417
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
418
+ )
419
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
420
+
421
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
422
+
423
+ # retrieve input_ids and inputs_embeds
424
+ if input_ids is not None and inputs_embeds is not None:
425
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
426
+ elif input_ids is not None:
427
+ batch_size, seq_length = input_ids.shape
428
+ elif inputs_embeds is not None:
429
+ batch_size, seq_length, _ = inputs_embeds.shape
430
+ else:
431
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
432
+
433
+ seq_length_with_past = seq_length
434
+ past_key_values_length = 0
435
+
436
+ if past_key_values is not None:
437
+ past_key_values_length = past_key_values[0][0].shape[2]
438
+ seq_length_with_past = seq_length_with_past + past_key_values_length
439
+
440
+ if position_ids is None:
441
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
442
+ position_ids = torch.arange(
443
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
444
+ )
445
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
446
+ else:
447
+ position_ids = position_ids.view(-1, seq_length).long()
448
+
449
+ if inputs_embeds is None:
450
+ inputs_embeds = self.embed_tokens(input_ids)
451
+ # embed positions
452
+ if attention_mask is None:
453
+ attention_mask = torch.ones(
454
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
455
+ )
456
+ attention_mask = self._prepare_decoder_attention_mask(
457
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
458
+ )
459
+
460
+ hidden_states = inputs_embeds
461
+
462
+ if self.gradient_checkpointing and self.training:
463
+ if use_cache:
464
+ logger.warning_once(
465
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
466
+ )
467
+ use_cache = False
468
+
469
+ # decoder layers
470
+ all_hidden_states = () if output_hidden_states else None
471
+ all_self_attns = () if output_attentions else None
472
+ next_decoder_cache = () if use_cache else None
473
+
474
+ for idx, decoder_layer in enumerate(self.layers):
475
+ if output_hidden_states:
476
+ all_hidden_states += (hidden_states,)
477
+
478
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
479
+
480
+ if self.gradient_checkpointing and self.training:
481
+
482
+ def create_custom_forward(module):
483
+ def custom_forward(*inputs):
484
+ # None for past_key_value
485
+ return module(*inputs, output_attentions, None)
486
+
487
+ return custom_forward
488
+
489
+ layer_outputs = torch.utils.checkpoint.checkpoint(
490
+ create_custom_forward(decoder_layer),
491
+ hidden_states,
492
+ attention_mask,
493
+ position_ids,
494
+ None,
495
+ )
496
+ else:
497
+ layer_outputs = decoder_layer(
498
+ hidden_states,
499
+ attention_mask=attention_mask,
500
+ position_ids=position_ids,
501
+ past_key_value=past_key_value,
502
+ output_attentions=output_attentions,
503
+ use_cache=use_cache,
504
+ )
505
+ # print('debug_attention_mask', type(attention_mask),attention_mask.dtype)
506
+ # print('debug_position_ids', type(position_ids),position_ids.dtype)
507
+ hidden_states = layer_outputs[0]
508
+
509
+ if use_cache:
510
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
511
+
512
+ if output_attentions:
513
+ all_self_attns += (layer_outputs[1],)
514
+
515
+ hidden_states = self.norm(hidden_states)
516
+
517
+ # add hidden states from the last decoder layer
518
+ if output_hidden_states:
519
+ all_hidden_states += (hidden_states,)
520
+
521
+ next_cache = next_decoder_cache if use_cache else None
522
+ if not return_dict:
523
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
524
+ return BaseModelOutputWithPast(
525
+ last_hidden_state=hidden_states,
526
+ past_key_values=next_cache,
527
+ hidden_states=all_hidden_states,
528
+ attentions=all_self_attns,
529
+ )
530
+
531
+
532
+ class XModelForCausalLM(PreTrainedModel):
533
+ def __init__(self, config):
534
+ super().__init__(config)
535
+ self.model = Model(config)
536
+
537
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
538
+
539
+ # Initialize weights and apply final processing
540
+ self.post_init()
541
+
542
+ def get_input_embeddings(self):
543
+ return self.model.embed_tokens
544
+
545
+ def set_input_embeddings(self, value):
546
+ self.model.embed_tokens = value
547
+
548
+ def get_output_embeddings(self):
549
+ return self.lm_head
550
+
551
+ def set_output_embeddings(self, new_embeddings):
552
+ self.lm_head = new_embeddings
553
+
554
+ def set_decoder(self, decoder):
555
+ self.model = decoder
556
+
557
+ def get_decoder(self):
558
+ return self.model
559
+
560
+ def forward(
561
+ self,
562
+ input_ids: torch.LongTensor = None,
563
+ attention_mask: Optional[torch.Tensor] = None,
564
+ position_ids: Optional[torch.LongTensor] = None,
565
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
566
+ inputs_embeds: Optional[torch.FloatTensor] = None,
567
+ labels: Optional[torch.LongTensor] = None,
568
+ use_cache: Optional[bool] = None,
569
+ output_attentions: Optional[bool] = None,
570
+ output_hidden_states: Optional[bool] = None,
571
+ return_dict: Optional[bool] = None,
572
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
573
+ r"""
574
+ Args:
575
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
576
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
577
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
578
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
579
+
580
+ Returns:
581
+
582
+ Example:
583
+
584
+ ```python
585
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
586
+
587
+ >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
588
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
589
+
590
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
591
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
592
+
593
+ >>> # Generate
594
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
595
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
596
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
597
+ ```"""
598
+
599
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
600
+ output_hidden_states = (
601
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
602
+ )
603
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
604
+
605
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
606
+ outputs = self.model(
607
+ input_ids=input_ids,
608
+ attention_mask=attention_mask,
609
+ position_ids=position_ids,
610
+ past_key_values=past_key_values,
611
+ inputs_embeds=inputs_embeds,
612
+ use_cache=use_cache,
613
+ output_attentions=output_attentions,
614
+ output_hidden_states=output_hidden_states,
615
+ return_dict=return_dict,
616
+ )
617
+
618
+ hidden_states = outputs[0]
619
+ logits = self.lm_head(hidden_states)
620
+
621
+ loss = None
622
+ if labels is not None:
623
+ # Shift so that tokens < n predict n
624
+ shift_logits = logits[..., :-1, :].contiguous()
625
+ shift_labels = labels[..., 1:].contiguous()
626
+ # Flatten the tokens
627
+ loss_fct = CrossEntropyLoss()
628
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
629
+ shift_labels = shift_labels.view(-1)
630
+ # Enable model parallelism
631
+ shift_labels = shift_labels.to(shift_logits.device)
632
+ loss = loss_fct(shift_logits, shift_labels)
633
+
634
+ if not return_dict:
635
+ output = (logits,) + outputs[1:]
636
+ return (loss,) + output if loss is not None else output
637
+
638
+ return CausalLMOutputWithPast(
639
+ loss=loss,
640
+ logits=logits,
641
+ past_key_values=outputs.past_key_values,
642
+ hidden_states=outputs.hidden_states,
643
+ attentions=outputs.attentions,
644
+ )
645
+
646
+ def prepare_inputs_for_generation(
647
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
648
+ ):
649
+ if past_key_values:
650
+ input_ids = input_ids[:, -1:]
651
+
652
+ position_ids = kwargs.get("position_ids", None)
653
+ if attention_mask is not None and position_ids is None:
654
+ # create position_ids on the fly for batch generation
655
+ position_ids = attention_mask.long().cumsum(-1) - 1
656
+ position_ids.masked_fill_(attention_mask == 0, 1)
657
+ if past_key_values:
658
+ position_ids = position_ids[:, -1].unsqueeze(-1)
659
+
660
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
661
+ if inputs_embeds is not None and past_key_values is None:
662
+ model_inputs = {"inputs_embeds": inputs_embeds}
663
+ else:
664
+ model_inputs = {"input_ids": input_ids}
665
+
666
+ model_inputs.update(
667
+ {
668
+ "position_ids": position_ids,
669
+ "past_key_values": past_key_values,
670
+ "use_cache": kwargs.get("use_cache"),
671
+ "attention_mask": attention_mask,
672
+ }
673
+ )
674
+ return model_inputs
675
+
676
+ @staticmethod
677
+ def _reorder_cache(past_key_values, beam_idx):
678
+ reordered_past = ()
679
+ for layer_past in past_key_values:
680
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
681
+ return reordered_past
682
+
683
+ def get_num_params(self, non_embedding=True):
684
+ """
685
+ Return the number of parameters in the model.
686
+ For non-embedding count (default), the position embeddings get subtracted.
687
+ The token embeddings would too, except due to the parameter sharing these
688
+ params are actually used as weights in the final layer, so we include them.
689
+ """
690
+ n_params = sum(p.numel() for p in self.parameters())
691
+ # if non_embedding:
692
+ # n_params -= self.transformer.wte.weight.numel()
693
+ return n_params
694
+
695
+ def estimate_mfu(self, fwdbwd_per_iter, dt, max_length=None, device_model='A100', dtype='float32'):
696
+ """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
697
+ # first estimate the number of flops we do per iteration.
698
+ # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
699
+ N = self.get_num_params()
700
+ n_layer = self.config.num_hidden_layers
701
+ n_head = self.config.num_attention_heads
702
+ n_embd = self.config.hidden_size
703
+
704
+ if max_length is None:
705
+ max_length = self.config.max_position_embeddings
706
+
707
+ L, H, Q, T = n_layer, n_head, n_embd // n_head, max_length
708
+ flops_per_token = 6 * N + 12 * L * H * Q * T
709
+ flops_per_fwdbwd = flops_per_token * T
710
+ flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
711
+ # express our flops throughput as ratio of A100 bfloat16 peak flops
712
+ flops_achieved = flops_per_iter * (1.0 / dt) # per second
713
+
714
+ if device_model is None:
715
+ device_model = torch.cuda.get_device_name(0)
716
+
717
+ flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
718
+ if device_model == 'DCU' and dtype == 'float16':
719
+ flops_promised = 23.6e12
720
+ elif device_model == 'DCU' and dtype == 'float32':
721
+ flops_promised = 11.8e12
722
+ elif device_model == 'NVIDIA V100' or 'V100' in device_model:
723
+ flops_promised = 28e12
724
+ elif device_model == 'NVIDIA H100' or 'H100' in device_model or device_model == 'NVIDIA H800' or 'H800' in device_model:
725
+ flops_promised = 1513e12
726
+
727
+ mfu = flops_achieved / flops_promised
728
+ return flops_achieved, mfu
729
+
730
+ def flops_per_token(self, max_length=None, non_embedding=False):
731
+ N = self.get_num_params()
732
+ if non_embedding:
733
+ N -= self.config.vocab_size * self.config.hidden_size * 2
734
+ n_layer = self.config.num_hidden_layers
735
+ n_head = self.config.num_attention_heads
736
+ n_embd = self.config.hidden_size
737
+ if max_length is None:
738
+ max_length = self.config.max_position_embeddings
739
+ L, H, Q, T = n_layer, n_head, n_embd // n_head, max_length
740
+ flops_per_token = 6 * N + 12 * L * H * Q * T
741
+ return flops_per_token
pretrain/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce60f5419dce7bc3827bebd43b56840d2e255057076de6ecb9e1890a9b21f864
3
+ size 2648988886
pretrain/tokenization_xmodel.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import os
22
+ from shutil import copyfile
23
+ from typing import Any, Dict, List, Optional, Tuple
24
+
25
+ import sentencepiece as spm
26
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
27
+ from transformers.utils import logging
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {"vocab_file": "xmodel_65280.model"}
32
+
33
+ PRETRAINED_VOCAB_FILES_MAP = {
34
+ "vocab_file": {},
35
+ "tokenizer_file": {},
36
+ }
37
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
38
+
39
+
40
+ class XModelTokenizer(PreTrainedTokenizer):
41
+ """
42
+ Construct a XModel tokenizer. Based on byte-level Byte-Pair-Encoding.
43
+
44
+ Args:
45
+ vocab_file (`str`):
46
+ Path to the vocabulary file.
47
+ """
48
+
49
+ vocab_files_names = VOCAB_FILES_NAMES
50
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
51
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
52
+ model_input_names = ["input_ids", "attention_mask"]
53
+
54
+ def __init__(
55
+ self,
56
+ vocab_file,
57
+ unk_token="<unk>",
58
+ bos_token="<s>",
59
+ eos_token="</s>",
60
+ pad_token=None,
61
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
62
+ add_bos_token=True,
63
+ add_eos_token=False,
64
+ clean_up_tokenization_spaces=False,
65
+ **kwargs,
66
+ ):
67
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
68
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
69
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
70
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
71
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
72
+ self.vocab_file = vocab_file
73
+ self.add_bos_token = add_bos_token
74
+ self.add_eos_token = add_eos_token
75
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
76
+ self.sp_model.Load(vocab_file)
77
+ super().__init__(
78
+ bos_token=bos_token,
79
+ eos_token=eos_token,
80
+ unk_token=unk_token,
81
+ pad_token=pad_token,
82
+ add_bos_token=add_bos_token,
83
+ add_eos_token=add_eos_token,
84
+ sp_model_kwargs=self.sp_model_kwargs,
85
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
86
+ **kwargs,
87
+ )
88
+
89
+ def __getstate__(self):
90
+ state = self.__dict__.copy()
91
+ state["sp_model"] = None
92
+ return state
93
+
94
+ def __setstate__(self, d):
95
+ self.__dict__ = d
96
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
97
+ self.sp_model.Load(self.vocab_file)
98
+
99
+ @property
100
+ def vocab_size(self):
101
+ """Returns vocab size"""
102
+ return self.sp_model.get_piece_size()
103
+
104
+ def get_vocab(self):
105
+ """Returns vocab as a dict"""
106
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
107
+ vocab.update(self.added_tokens_encoder)
108
+ return vocab
109
+
110
+ def _tokenize(self, text):
111
+ """Returns a tokenized string."""
112
+ return self.sp_model.encode(text, out_type=str)
113
+
114
+ def _convert_token_to_id(self, token):
115
+ """Converts a token (str) in an id using the vocab."""
116
+ return self.sp_model.piece_to_id(token)
117
+
118
+ def _convert_id_to_token(self, index):
119
+ """Converts an index (integer) in a token (str) using the vocab."""
120
+ token = self.sp_model.IdToPiece(index)
121
+ return token
122
+
123
+ def convert_tokens_to_string(self, tokens):
124
+ """Converts a sequence of tokens (string) in a single string."""
125
+ current_sub_tokens = []
126
+ out_string = ""
127
+ prev_is_special = False
128
+ for i, token in enumerate(tokens):
129
+ # make sure that special tokens are not decoded using sentencepiece model
130
+ if token in self.all_special_tokens:
131
+ if not prev_is_special and i != 0:
132
+ out_string += " "
133
+ out_string += self.sp_model.decode(current_sub_tokens) + token
134
+ prev_is_special = True
135
+ current_sub_tokens = []
136
+ else:
137
+ current_sub_tokens.append(token)
138
+ prev_is_special = False
139
+ out_string += self.sp_model.decode(current_sub_tokens)
140
+ return out_string
141
+
142
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
143
+ """
144
+ Save the vocabulary and special tokens file to a directory.
145
+
146
+ Args:
147
+ save_directory (`str`):
148
+ The directory in which to save the vocabulary.
149
+
150
+ Returns:
151
+ `Tuple(str)`: Paths to the files saved.
152
+ """
153
+ if not os.path.isdir(save_directory):
154
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
155
+ return
156
+ out_vocab_file = os.path.join(
157
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
158
+ )
159
+
160
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
161
+ copyfile(self.vocab_file, out_vocab_file)
162
+ elif not os.path.isfile(self.vocab_file):
163
+ with open(out_vocab_file, "wb") as fi:
164
+ content_spiece_model = self.sp_model.serialized_model_proto()
165
+ fi.write(content_spiece_model)
166
+
167
+ return (out_vocab_file,)
168
+
169
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
170
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
171
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
172
+
173
+ output = bos_token_id + token_ids_0 + eos_token_id
174
+
175
+ if token_ids_1 is not None:
176
+ output = output + bos_token_id + token_ids_1 + eos_token_id
177
+
178
+ return output
179
+
180
+ def get_special_tokens_mask(
181
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
182
+ already_has_special_tokens: bool = False
183
+ ) -> List[int]:
184
+ """
185
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
186
+ special tokens using the tokenizer `prepare_for_model` method.
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
194
+ Whether or not the token list is already formatted with special tokens for the model.
195
+
196
+ Returns:
197
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
198
+ """
199
+ if already_has_special_tokens:
200
+ return super().get_special_tokens_mask(
201
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
202
+ )
203
+
204
+ bos_token_id = [1] if self.add_bos_token else []
205
+ eos_token_id = [1] if self.add_eos_token else []
206
+
207
+ if token_ids_1 is None:
208
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
209
+ return (
210
+ bos_token_id
211
+ + ([0] * len(token_ids_0))
212
+ + eos_token_id
213
+ + bos_token_id
214
+ + ([0] * len(token_ids_1))
215
+ + eos_token_id
216
+ )
217
+
218
+ def create_token_type_ids_from_sequences(
219
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
220
+ ) -> List[int]:
221
+ """
222
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
223
+ sequence pair mask has the following format:
224
+
225
+ ```
226
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
227
+ | first sequence | second sequence |
228
+ ```
229
+
230
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
231
+
232
+ Args:
233
+ token_ids_0 (`List[int]`):
234
+ List of ids.
235
+ token_ids_1 (`List[int]`, *optional*):
236
+ Optional second list of IDs for sequence pairs.
237
+
238
+ Returns:
239
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
240
+ """
241
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
242
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
243
+
244
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
245
+
246
+ if token_ids_1 is not None:
247
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
248
+
249
+ return output
pretrain/tokenizer_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": ["tokenization_xmodel.XModelTokenizer", null]
4
+ },
5
+ "add_bos_token": false,
6
+ "add_eos_token": false,
7
+ "bos_token": {
8
+ "__type": "AddedToken",
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
16
+ "clean_up_tokenization_spaces": false,
17
+ "eos_token": {
18
+ "__type": "AddedToken",
19
+ "content": "</s>",
20
+ "lstrip": false,
21
+ "normalized": true,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "model_max_length": 1000000000000000019884624838656,
26
+ "sp_model_kwargs": {},
27
+ "tokenizer_class": "XModelTokenizer",
28
+ "unk_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
pretrain/xmodel_65280.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3d91965878687648480d3e4dfedb5c66600b1612559e4579cdba76934b7d47e
3
+ size 1091044
pretrain/xmodel_65280.vocab ADDED
The diff for this file is too large to render. See raw diff