Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,87 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
## Uses
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
-
##
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
```markdown
|
2 |
+
# Image-to-Poem Generator
|
|
|
|
|
3 |
|
4 |
+
This project uses a pre-trained model to generate poems based on input images. It leverages the HF中国镜像站 Transformers library and a custom-trained model to create poetic descriptions of visual content.
|
5 |
|
6 |
+
## Table of Contents
|
7 |
|
8 |
+
1. [Installation](#installation)
|
9 |
+
2. [Usage](#usage)
|
10 |
+
3. [Model Information](#model-information)
|
11 |
+
4. [Function Description](#function-description)
|
12 |
+
5. [Example](#example)
|
13 |
+
6. [Requirements](#requirements)
|
14 |
+
7. [License](#license)
|
15 |
|
16 |
+
## Installation
|
17 |
|
18 |
+
To use this image-to-poem generator, you need to install the required libraries. You can do this using pip:
|
19 |
|
20 |
+
```bash
|
21 |
+
pip install transformers Pillow
|
22 |
+
```
|
23 |
|
24 |
+
## Usage
|
25 |
|
26 |
+
1. First, import the necessary modules and load the pre-trained model:
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
```python
|
30 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
31 |
+
from PIL import Image
|
32 |
|
33 |
+
processor = AutoProcessor.from_pretrained("Sourabh2/git-base-poem")
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("Sourabh2/git-base-poem")
|
35 |
+
```
|
36 |
|
37 |
+
2. Define the `generate_caption` function:
|
|
|
|
|
38 |
|
|
|
39 |
|
40 |
+
```python
|
41 |
+
def generate_caption(image_path):
|
42 |
+
image = Image.open(image_path)
|
43 |
+
inputs = processor(images=image, return_tensors="pt")
|
44 |
+
pixel_values = inputs.pixel_values
|
45 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
46 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
47 |
+
return generated_caption
|
48 |
+
```
|
49 |
|
50 |
+
3. Use the function to generate a poem from an image:
|
51 |
|
|
|
52 |
|
53 |
+
```python
|
54 |
+
image_path = "/path/to/your/image.jpg"
|
55 |
+
output = generate_caption(image_path)
|
56 |
+
print(output)
|
57 |
+
```
|
58 |
|
59 |
+
## Model Information
|
60 |
|
61 |
+
This project uses the "Sourabh2/git-base-poem" model, which is a fine-tuned version of the GIT (Generative Image-to-text Transformer) model. It has been specifically trained to generate poetic descriptions of images.
|
62 |
|
63 |
+
## Function Description
|
64 |
|
65 |
+
The `generate_caption` function takes an image file path as input and returns a generated poem. Here's what it does:
|
66 |
|
67 |
+
1. Opens the image file using PIL (Python Imaging Library).
|
68 |
+
2. Processes the image using the pre-trained processor.
|
69 |
+
3. Generates a poetic caption using the pre-trained model.
|
70 |
+
4. Decodes the generated output and returns it as a string.
|
71 |
|
|
|
72 |
|
73 |
+
## Example
|
74 |
|
75 |
+
```python
|
76 |
+
image_path = "/content/12330616_72ed8075fa.jpg"
|
77 |
+
output = generate_caption(image_path)
|
78 |
+
print(output)
|
79 |
+
```
|
80 |
|
81 |
+
This will print the generated poem based on the content of the image at the specified path.
|
82 |
|
83 |
+
## Requirements
|
84 |
|
85 |
+
- Python 3.6+
|
86 |
+
- transformers library
|
87 |
+
- Pillow (PIL) library
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|