--- language: - en license: apache-2.0 ---
LLAMA-3_8B_Unaligned_Alpha_RP_Soup
LLAMA-3_8B_Unaligned_Alpha_RP_Soup # Model Details This model is the outcome of multiple merges, starting with the base model SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha. The merging process was conducted in several stages: Merge 1: LLAMA-3_8B_Unaligned_Alpha was SLERP merged with EtherealRainbow-v0.3-8B. Merge 2: LLAMA-3_8B_Unaligned_Alpha was SLERP merged with TheDrummer/Llama-3SOME-8B-v2. Soup 1: Merge 1 was combined with Merge 2. Final Merge: Soup 1 was SLERP merged with Nitral-Archive/Hathor_Enigmatica-L3-8B-v0.4. The final model is surprisingly coherent (although slightly more censored), which is a bit unexpected, since all the intermediate merge steps were pretty incoherent.
Mergekit configs: # Merge 1 ```yaml slices: - sources: - model: SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha layer_range: [0, 32] - model: BeaverAI/Llama-3SOME-8B-v2d layer_range: [0, 32] merge_method: slerp base_model: SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` # Merge 2 ```yaml slices: - sources: - model: SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha layer_range: [0, 32] - model: invisietch/EtherealRainbow-v0.3-8B layer_range: [0, 32] merge_method: slerp base_model: SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` # Soup 1 ```yaml slices: - sources: - model: SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha layer_range: [0, 32] - model: Nitral-Archive/Hathor_Enigmatica-L3-8B-v0.4 layer_range: [0, 32] merge_method: slerp base_model: SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` # Final Merge ```yaml slices: - sources: - model: Soup 1 layer_range: [0, 32] - model: Nitral-Archive/Hathor_Enigmatica-L3-8B-v0.4 layer_range: [0, 32] merge_method: slerp base_model: Soup 1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ```
# Model instruction template: (Can use either ChatML or Llama-3) # ChatML ``` <|im_start|>system You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|> <|im_start|>User request {prompt}<|im_end|> <|im_start|>AI answer ``` # Llama-3-Instruct ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` **Recommended generation Presets:**
No idea, but sometimes Midnight Enigma gives nice results. max_new_tokens: 512 temperature: 0.98 top_p: 0.37 top_k: 100 typical_p: 1 min_p: 0 repetition_penalty: 1.18 do_sample: True
*Sometimes the model might output a text that's too long.