File size: 2,169 Bytes
d31084e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83716b7
d31084e
 
 
83716b7
d31084e
 
 
83716b7
d31084e
 
 
83716b7
d31084e
 
 
83716b7
d31084e
 
 
83716b7
c260988
b7cf562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59d4418
553d60b
59d4418
553d60b
f0ee7a8
553d60b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
language: en
tags:
- summarization
model-index:
- name: SamuelAllen123/t5-efficient-large-nl36_fine_tune_sum_V2
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 50.4987
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 25.6888
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 41.7283
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 46.2626
      verified: true
    - name: loss
      type: loss
      value: 1.5158178806304932
      verified: true
    - name: gen_len
      type: gen_len
      value: 24.0342
      verified: true
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 34.4055
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 14.127
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 24.3353
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 31.6582
      verified: true
    - name: loss
      type: loss
      value: 2.4456119537353516
      verified: true
    - name: gen_len
      type: gen_len
      value: 45.928
      verified: true
---
Trained on Samsum train split. 

Parameters for training:

no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight"]
optimizer_grouped_parameters = [
    {
        "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
        "weight_decay": 0.0,
    },
    {
        "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
        "weight_decay": 0.0,
    },
]

lr = 0.00005
optimizer = torch.optim.RAdam(optimizer_grouped_parameters, lr=lr)

lr_scheduler = get_scheduler(
        name="linear",
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=50005)

This was only for 10K steps

More details coming soon