--- language: en tags: - t5 - product-classification - category-prediction license: mit --- # T5 Product Category & Subcategory Classifier This model is fine-tuned on T5-base for product category and subcategory classification. ## Model Description - **Model Type:** T5 (Text-to-Text Transfer Transformer) - **Language:** English - **Task:** Product Classification - **Training Data:** 10,172 categorized products - **Input Format:** "Predict the product category and subcategory in the following format: 'Category: | Subcategory: '. Product: {product_name}" - **Output Format:** "Category: {category} | Subcategory: {subcategory}" ## Usage ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("{repo_id}") tokenizer = T5Tokenizer.from_pretrained("{repo_id}") def predict(text): prompt = f"Predict the product category and subcategory in the following format: 'Category: | Subcategory: '. Product: {text}" inputs = tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True) outputs = model.generate(**inputs, max_length=32, num_beams=4) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example result = predict("Pantene Suave & Liso Shampoo") print(result) ``` ## Training Details - **Base Model:** t5-base - **Training Type:** Fine-tuning - **Epochs:** 5 - **Batch Size:** 8 - **Learning Rate:** 3e-5 - **Weight Decay:** 0.01 ## Limitations - The model works best with product names in English - Performance may vary for products outside the training categories - Requires clear and specific product descriptions