feihu.hf
commited on
Commit
·
2d67d9d
1
Parent(s):
b6306e1
update README & config
Browse files- README.md +20 -18
- config.json +1 -1
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -34,6 +34,7 @@ QwQ is the reasoning model of the Qwen series. Compared with conventional instru
|
|
34 |
- Number of Layers: 64
|
35 |
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
|
36 |
- Context Length: Full 131,072 tokens
|
|
|
37 |
|
38 |
**Note:** For the best experience, please review the [usage guidelines](#usage-guidelines) before deploying QwQ models.
|
39 |
|
@@ -97,8 +98,9 @@ To achieve optimal performance, we recommend the following settings:
|
|
97 |
1. **Enforce Thoughtful Output**: Ensure the model starts with "\<think\>\n" to prevent generating empty thinking content, which can degrade output quality. If you use `apply_chat_template` and set `add_generation_prompt=True`, this is already automatically implemented, but it may cause the response to lack the \<think\> tag at the beginning. This is normal behavior.
|
98 |
|
99 |
2. **Sampling Parameters**:
|
100 |
-
- Use Temperature=0.6
|
101 |
- Use TopK between 20 and 40 to filter out rare token occurrences while maintaining the diversity of the generated output.
|
|
|
102 |
|
103 |
3. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. This feature is already implemented in `apply_chat_template`.
|
104 |
|
@@ -106,23 +108,23 @@ To achieve optimal performance, we recommend the following settings:
|
|
106 |
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
|
107 |
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g.,`\"answer\": \"C\"`." in the prompt.
|
108 |
|
109 |
-
5. **Handle Long Inputs**: For inputs exceeding
|
110 |
-
|
111 |
-
For supported frameworks, you could add the following to `config.json` to enable YaRN:
|
112 |
-
```json
|
113 |
-
{
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
}
|
121 |
-
```
|
122 |
-
|
123 |
-
For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
|
124 |
-
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
|
125 |
-
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
|
126 |
|
127 |
## Evaluation & Performance
|
128 |
|
|
|
34 |
- Number of Layers: 64
|
35 |
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
|
36 |
- Context Length: Full 131,072 tokens
|
37 |
+
- For prompts exceeding 8,192 tokens in length, you must enable YaRN as outlined in [this section](#usage-guidelines).
|
38 |
|
39 |
**Note:** For the best experience, please review the [usage guidelines](#usage-guidelines) before deploying QwQ models.
|
40 |
|
|
|
98 |
1. **Enforce Thoughtful Output**: Ensure the model starts with "\<think\>\n" to prevent generating empty thinking content, which can degrade output quality. If you use `apply_chat_template` and set `add_generation_prompt=True`, this is already automatically implemented, but it may cause the response to lack the \<think\> tag at the beginning. This is normal behavior.
|
99 |
|
100 |
2. **Sampling Parameters**:
|
101 |
+
- Use Temperature=0.6, TopP=0.95, MinP=0 instead of Greedy decoding to avoid endless repetitions.
|
102 |
- Use TopK between 20 and 40 to filter out rare token occurrences while maintaining the diversity of the generated output.
|
103 |
+
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may result in occasional language mixing and a slight decrease in performance.
|
104 |
|
105 |
3. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. This feature is already implemented in `apply_chat_template`.
|
106 |
|
|
|
108 |
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
|
109 |
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g.,`\"answer\": \"C\"`." in the prompt.
|
110 |
|
111 |
+
5. **Handle Long Inputs**: For inputs exceeding 8,192 tokens, enable [YaRN](https://arxiv.org/abs/2309.00071) to improve the model's ability to capture long-sequence information effectively.
|
112 |
+
|
113 |
+
For supported frameworks, you could add the following to `config.json` to enable YaRN:
|
114 |
+
```json
|
115 |
+
{
|
116 |
+
...,
|
117 |
+
"rope_scaling": {
|
118 |
+
"factor": 4.0,
|
119 |
+
"original_max_position_embeddings": 32768,
|
120 |
+
"type": "yarn"
|
121 |
+
}
|
122 |
+
}
|
123 |
+
```
|
124 |
+
|
125 |
+
For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
|
126 |
+
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
|
127 |
+
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
|
128 |
|
129 |
## Evaluation & Performance
|
130 |
|
config.json
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"hidden_size": 5120,
|
10 |
"initializer_range": 0.02,
|
11 |
"intermediate_size": 27648,
|
12 |
-
"max_position_embeddings":
|
13 |
"max_window_layers": 64,
|
14 |
"model_type": "qwen2",
|
15 |
"num_attention_heads": 40,
|
|
|
9 |
"hidden_size": 5120,
|
10 |
"initializer_range": 0.02,
|
11 |
"intermediate_size": 27648,
|
12 |
+
"max_position_embeddings": 40960,
|
13 |
"max_window_layers": 64,
|
14 |
"model_type": "qwen2",
|
15 |
"num_attention_heads": 40,
|
tokenizer_config.json
CHANGED
@@ -227,7 +227,7 @@
|
|
227 |
"<|video_pad|>"
|
228 |
],
|
229 |
"bos_token": null,
|
230 |
-
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
|
231 |
"clean_up_tokenization_spaces": false,
|
232 |
"eos_token": "<|im_end|>",
|
233 |
"errors": "replace",
|
|
|
227 |
"<|video_pad|>"
|
228 |
],
|
229 |
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n ') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
|
231 |
"clean_up_tokenization_spaces": false,
|
232 |
"eos_token": "<|im_end|>",
|
233 |
"errors": "replace",
|