--- language: - en base_model: - openai/clip-vit-large-patch14 tags: - memorability - computer_vision - perceptual_tasks - CLIP - LaMem - THINGS --- **PerceptCLIP-Memorability** is a model designed to predict **image memorability** (the likelihood of an image to be remembered). This is the official model from the paper: 📄 **["Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks"](https://arxiv.org/abs/2503.13260)**. We apply **LoRA adaptation** on the **CLIP visual encoder** and add an **MLP head** for memorability prediction. Our model achieves **state-of-the-art results**. ## Training Details - *Dataset*: [LaMem](http://memorability.csail.mit.edu/download.html) (Large-Scale Image Memorability) - *Architecture*: CLIP Vision Encoder (ViT-L/14) with *LoRA adaptation* - *Loss Function*: Mean Squared Error (MSE) Loss for memorability prediction - *Optimizer*: AdamW - *Learning Rate*: 5e-05 - *Batch Size*: 32 ## Installation & Requirements You can set up the environment using environment.yml or manually install dependencies: - python=3.9.15 - cudatoolkit=11.7 - torchvision=0.14.0 - transformers=4.45.2 - peft=0.14.0 ## Usage To use the model for inference: ```python from torchvision import transforms import torch from PIL import Image from huggingface_hub import hf_hub_download import importlib.util device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model class definition dynamically class_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Memorability", filename="modeling.py") spec = importlib.util.spec_from_file_location("modeling", class_path) modeling = importlib.util.module_from_spec(spec) spec.loader.exec_module(modeling) # initialize a model ModelClass = modeling.clip_lora_model model = ModelClass().to(device) # Load pretrained model model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Memorability", filename="perceptCLIP_Memorability.pth") model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() # Load an image image = Image.open("image_path.jpg").convert("RGB") # Preprocess and predict def Mem_preprocess(): transform = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(size=(224, 224)), transforms.ToTensor(), transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) ]) return transform image = Mem_preprocess()(image).unsqueeze(0).to(device) with torch.no_grad(): mem_score = model(image).item() print(f"Predicted Memorability Score: {mem_score:.4f}") ``` ## Citation If you use this model in your research, please cite: ```bibtex @article{zalcher2025don, title={Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks}, author={Zalcher, Amit and Wasserman, Navve and Beliy, Roman and Heinimann, Oliver and Irani, Michal}, journal={arXiv preprint arXiv:2503.13260}, year={2025} }