internimage_h_jointto22k_384 / modeling_internimage.py
czczup's picture
Upload models
fa0537d verified
# --------------------------------------------------------
# InternImage
# Copyright (c) 2025 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, trunc_normal_
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from .configuration_internimage import InternImageConfig
from .dcnv3 import DCNv3, DCNv3_pytorch, has_cuda_kernel
from .dcnv3_func import dcnv3_core_pytorch
@dataclass
class BackboneOutput(ModelOutput):
"""
Base class for outputs of backbones.
"""
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
pooler_output: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
loss: Optional[torch.FloatTensor] = None
class to_channels_first(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
class to_channels_last(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
def build_norm_layer(dim,
norm_layer,
in_format='channels_last',
out_format='channels_last',
eps=1e-6):
layers = []
if norm_layer == 'BN':
if in_format == 'channels_last':
layers.append(to_channels_first())
layers.append(nn.BatchNorm2d(dim))
if out_format == 'channels_last':
layers.append(to_channels_last())
elif norm_layer == 'LN':
if in_format == 'channels_first':
layers.append(to_channels_last())
layers.append(nn.LayerNorm(dim, eps=eps))
if out_format == 'channels_first':
layers.append(to_channels_first())
else:
raise NotImplementedError(
f'build_norm_layer does not support {norm_layer}')
return nn.Sequential(*layers)
def build_act_layer(act_layer):
if act_layer == 'ReLU':
return nn.ReLU(inplace=True)
elif act_layer == 'SiLU':
return nn.SiLU(inplace=True)
elif act_layer == 'GELU':
return nn.GELU()
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
class CrossAttention(nn.Module):
r""" Cross Attention Module
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
attn_head_dim (int, optional): Dimension of attention head.
out_dim (int, optional): Dimension of output.
"""
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
attn_head_dim=None,
out_dim=None):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = q.reshape(B, N, 1, self.num_heads,
-1).permute(2, 0, 3, 1,
4).squeeze(0) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1,
4).squeeze(0)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1,
4).squeeze(0)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
r"""Attentive Block
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: False.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
drop (float, optional): Dropout rate. Default: 0.0.
attn_drop (float, optional): Attention dropout rate. Default: 0.0.
drop_path (float | tuple[float], optional): Stochastic depth rate.
Default: 0.0.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm.
attn_head_dim (int, optional): Dimension of attention head. Default: None.
out_dim (int, optional): Dimension of output. Default: None.
"""
def __init__(self,
dim,
num_heads,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer='LN',
attn_head_dim=None,
out_dim=None):
super().__init__()
self.norm1_q = build_norm_layer(dim, norm_layer, eps=1e-6)
self.norm1_k = build_norm_layer(dim, norm_layer, eps=1e-6)
self.norm1_v = build_norm_layer(dim, norm_layer, eps=1e-6)
self.cross_dcn = CrossAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim,
out_dim=out_dim)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self,
x_q,
x_kv,
pos_q,
pos_k,
bool_masked_pos,
rel_pos_bias=None):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_dcn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv = x
pos_q, pos_k = 0, 0
x = super().forward(x_q, x_kv, pos_q, pos_k,
bool_masked_pos=None,
rel_pos_bias=None)
x = x.squeeze(1)
return x
class StemLayer(nn.Module):
r"""Stem layer of InternImage
Args:
in_chans (int): number of input channels
out_chans (int): number of output channels
act_layer (str): activation layer
norm_layer (str): normalization layer
"""
def __init__(self,
in_chans=3,
out_chans=96,
act_layer='GELU',
norm_layer='BN'):
super().__init__()
self.conv1 = nn.Conv2d(in_chans,
out_chans // 2,
kernel_size=3,
stride=2,
padding=1)
self.norm1 = build_norm_layer(out_chans // 2, norm_layer,
'channels_first', 'channels_first')
self.act = build_act_layer(act_layer)
self.conv2 = nn.Conv2d(out_chans // 2,
out_chans,
kernel_size=3,
stride=2,
padding=1)
self.norm2 = build_norm_layer(out_chans, norm_layer, 'channels_first',
'channels_last')
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.act(x)
x = self.conv2(x)
x = self.norm2(x)
return x
class DownsampleLayer(nn.Module):
r"""Downsample layer of InternImage
Args:
channels (int): number of input channels
norm_layer (str): normalization layer
"""
def __init__(self, channels, norm_layer='LN'):
super().__init__()
self.conv = nn.Conv2d(channels,
2 * channels,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm = build_norm_layer(2 * channels, norm_layer,
'channels_first', 'channels_last')
def forward(self, x):
x = self.conv(x.permute(0, 3, 1, 2))
x = self.norm(x)
return x
class MLPLayer(nn.Module):
r"""MLP layer of InternImage
Args:
in_features (int): number of input features
hidden_features (int): number of hidden features
out_features (int): number of output features
act_layer (str): activation layer
drop (float): dropout rate
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer='GELU',
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = build_act_layer(act_layer)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class InternImageLayer(nn.Module):
r"""Basic layer of InternImage
Args:
core_op (nn.Module): core operation of InternImage
channels (int): number of input channels
groups (list): Groups of each block.
mlp_ratio (float): ratio of mlp hidden features to input channels
drop (float): dropout rate
drop_path (float): drop path rate
act_layer (str): activation layer
norm_layer (str): normalization layer
post_norm (bool): whether to use post normalization
layer_scale (float): layer scale
offset_scale (float): offset scale
with_cp (bool): whether to use checkpoint
"""
def __init__(self,
core_op,
channels,
groups,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer='GELU',
norm_layer='LN',
post_norm=False,
layer_scale=None,
offset_scale=1.0,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
remove_center=False, # for InternImage-H/G
):
super().__init__()
self.channels = channels
self.groups = groups
self.mlp_ratio = mlp_ratio
self.with_cp = with_cp
self.norm1 = build_norm_layer(channels, 'LN')
self.post_norm = post_norm
self.dcn = core_op(
channels=channels,
kernel_size=3,
stride=1,
pad=1,
dilation=1,
group=groups,
offset_scale=offset_scale,
act_layer=act_layer,
norm_layer=norm_layer,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
center_feature_scale=center_feature_scale, # for InternImage-H/G
remove_center=remove_center, # for InternImage-H/G
)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.norm2 = build_norm_layer(channels, 'LN')
self.mlp = MLPLayer(in_features=channels,
hidden_features=int(channels * mlp_ratio),
act_layer=act_layer,
drop=drop)
self.layer_scale = layer_scale is not None
if self.layer_scale:
self.layer_scale1 = nn.Parameter(layer_scale * torch.ones(channels),
requires_grad=True)
self.layer_scale2 = nn.Parameter(layer_scale * torch.ones(channels),
requires_grad=True)
self.res_post_norm = res_post_norm
if res_post_norm:
self.res_post_norm1 = build_norm_layer(channels, 'LN')
self.res_post_norm2 = build_norm_layer(channels, 'LN')
def forward(self, x):
def _inner_forward(x):
if not self.layer_scale:
if self.post_norm:
x = x + self.drop_path(self.norm1(self.dcn(x)))
x = x + self.drop_path(self.norm2(self.mlp(x)))
elif self.res_post_norm: # for InternImage-H/G
x = x + self.drop_path(self.res_post_norm1(self.dcn(self.norm1(x))))
x = x + self.drop_path(self.res_post_norm2(self.mlp(self.norm2(x))))
else:
x = x + self.drop_path(self.dcn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
if self.post_norm:
x = x + self.drop_path(self.layer_scale1 * self.norm1(self.dcn(x)))
x = x + self.drop_path(self.layer_scale2 * self.norm2(self.mlp(x)))
else:
x = x + self.drop_path(self.layer_scale1 * self.dcn(self.norm1(x)))
x = x + self.drop_path(self.layer_scale2 * self.mlp(self.norm2(x)))
return x
if self.with_cp and x.requires_grad:
x = checkpoint.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class InternImageBlock(nn.Module):
r"""Block of InternImage
Args:
core_op (nn.Module): core operation of InternImage
channels (int): number of input channels
depths (list): Depth of each block.
groups (list): Groups of each block.
mlp_ratio (float): ratio of mlp hidden features to input channels
drop (float): dropout rate
drop_path (float): drop path rate
act_layer (str): activation layer
norm_layer (str): normalization layer
post_norm (bool): whether to use post normalization
layer_scale (float): layer scale
offset_scale (float): offset scale
with_cp (bool): whether to use checkpoint
"""
def __init__(self,
core_op,
channels,
depth,
groups,
downsample=True,
mlp_ratio=4.,
drop=0.,
drop_path=0.,
act_layer='GELU',
norm_layer='LN',
post_norm=False,
offset_scale=1.0,
layer_scale=None,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
post_norm_block_ids=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
remove_center=False, # for InternImage-H/G
):
super().__init__()
self.channels = channels
self.depth = depth
self.post_norm = post_norm
self.center_feature_scale = center_feature_scale
self.blocks = nn.ModuleList([
InternImageLayer(
core_op=core_op,
channels=channels,
groups=groups,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
act_layer=act_layer,
norm_layer=norm_layer,
post_norm=post_norm,
layer_scale=layer_scale,
offset_scale=offset_scale,
with_cp=with_cp,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
res_post_norm=res_post_norm, # for InternImage-H/G
center_feature_scale=center_feature_scale, # for InternImage-H/G
remove_center=remove_center, # for InternImage-H/G
) for i in range(depth)
])
if not self.post_norm or center_feature_scale:
self.norm = build_norm_layer(channels, 'LN')
self.post_norm_block_ids = post_norm_block_ids
if post_norm_block_ids is not None: # for InternImage-H/G
self.post_norms = nn.ModuleList(
[build_norm_layer(channels, 'LN', eps=1e-6) for _ in post_norm_block_ids]
)
self.downsample = DownsampleLayer(
channels=channels, norm_layer=norm_layer) if downsample else None
def forward(self, x, return_wo_downsample=False):
for i, blk in enumerate(self.blocks):
x = blk(x)
if (self.post_norm_block_ids is not None) and (i in self.post_norm_block_ids):
index = self.post_norm_block_ids.index(i)
x = self.post_norms[index](x) # for InternImage-H/G
if not self.post_norm or self.center_feature_scale:
x = self.norm(x)
if return_wo_downsample:
x_ = x
if self.downsample is not None:
x = self.downsample(x)
if return_wo_downsample:
return x, x_
return x
class InternImage(nn.Module):
r"""InternImage
A PyTorch impl of : `InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions` -
https://arxiv.org/pdf/2103.14030
Args:
core_op (str): Core operator. Default: 'DCNv3'
channels (int): Number of the first stage. Default: 64
depths (list): Depth of each block. Default: [3, 4, 18, 5]
groups (list): Groups of each block. Default: [3, 6, 12, 24]
num_classes (int): Number of classes. Default: 1000
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
drop_rate (float): Probability of an element to be zeroed. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.
act_layer (str): Activation layer. Default: 'GELU'
norm_layer (str): Normalization layer. Default: 'LN'
layer_scale (float): The initial value of layer scale. Default: None
cls_scale (float): Whether to use class scale. Default: 1.5
with_cp (bool): Use gradient checkpointing or not. Default: False
dw_kernel_size (int): Size of the dwconv. Default: None
use_clip_projector (bool): Whether to use clip projector. Default: False
level2_post_norm (bool): Whether to use level2 post norm. Default: False
level2_post_norm_block_ids (list): Indexes of post norm blocks. Default: None
res_post_norm (bool): Whether to use res post norm. Default: False
center_feature_scale (bool): Whether to use center feature scale. Default: False
"""
def __init__(self,
core_op='DCNv3',
channels=64,
depths=[3, 4, 18, 5],
groups=[3, 6, 12, 24],
num_classes=1000,
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.2,
drop_path_type='linear',
act_layer='GELU',
norm_layer='LN',
layer_scale=None,
offset_scale=1.0,
post_norm=False,
cls_scale=1.5,
with_cp=False,
dw_kernel_size=None, # for InternImage-H/G
use_clip_projector=False, # for InternImage-H/G
level2_post_norm=False, # for InternImage-H/G
level2_post_norm_block_ids=None, # for InternImage-H/G
res_post_norm=False, # for InternImage-H/G
center_feature_scale=False, # for InternImage-H/G
remove_center=False, # for InternImage-H/G
**kwargs):
super().__init__()
if core_op == 'DCNv3' and has_cuda_kernel:
self.core_op = DCNv3
print('DCNv3 is installed, using CUDA implementation.')
elif core_op == 'DCNv3' and not has_cuda_kernel:
self.core_op = DCNv3_pytorch
print('DCNv3 is not installed, using PyTorch implementation.')
else:
self.core_op = DCNv3_pytorch
print('Using DCNv3 PyTorch implementation.')
self.num_classes = num_classes
self.num_levels = len(depths)
self.depths = depths
self.channels = channels
self.num_features = int(channels * 2 ** (self.num_levels - 1))
self.post_norm = post_norm
self.mlp_ratio = mlp_ratio
self.use_clip_projector = use_clip_projector
self.level2_post_norm_block_ids = level2_post_norm_block_ids
self.remove_center = remove_center
print(f'using core type: {core_op}')
print(f'level2_post_norm: {level2_post_norm}')
print(f'level2_post_norm_block_ids: {level2_post_norm_block_ids}')
print(f'res_post_norm: {res_post_norm}')
print(f'remove_center: {remove_center}')
in_chans = 3
self.patch_embed = StemLayer(in_chans=in_chans,
out_chans=channels,
act_layer=act_layer,
norm_layer=norm_layer)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
if drop_path_type == 'uniform':
for i in range(len(dpr)):
dpr[i] = drop_path_rate
self.levels = nn.ModuleList()
for i in range(self.num_levels):
post_norm_block_ids = level2_post_norm_block_ids if level2_post_norm and (
i == 2) else None # for InternImage-H/G
level = InternImageBlock(
core_op=self.core_op,
channels=int(channels * 2 ** i),
depth=depths[i],
groups=groups[i],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
act_layer=act_layer,
norm_layer=norm_layer,
post_norm=post_norm,
downsample=(i < self.num_levels - 1),
layer_scale=layer_scale,
offset_scale=offset_scale,
with_cp=with_cp,
dw_kernel_size=dw_kernel_size, # for InternImage-H/G
post_norm_block_ids=post_norm_block_ids, # for InternImage-H/G
res_post_norm=res_post_norm, # for InternImage-H/G
center_feature_scale=center_feature_scale, # for InternImage-H/G
remove_center=remove_center, # for InternImage-H/G
)
self.levels.append(level)
if self.num_classes > 0:
if not use_clip_projector: # for InternImage-T/S/B/L/XL
self.conv_head = nn.Sequential(
nn.Conv2d(self.num_features,
int(self.num_features * cls_scale),
kernel_size=1,
bias=False),
build_norm_layer(int(self.num_features * cls_scale), 'BN',
'channels_first', 'channels_first'),
build_act_layer(act_layer))
self.head = nn.Linear(int(self.num_features * cls_scale), num_classes) \
if num_classes > 0 else nn.Identity()
else: # for InternImage-H/G
pretrain_embed_dim, _stride, attnpool_num_heads, clip_embed_dim = 1024, 2, 16, 768
self.dcnv3_head_x4 = nn.Sequential(
nn.Conv2d(in_channels=self.num_features,
out_channels=pretrain_embed_dim * (_stride ** 2),
kernel_size=1), nn.PixelShuffle(_stride))
self.dcnv3_head_x3 = nn.Conv2d(in_channels=self.num_features // 2,
out_channels=pretrain_embed_dim,
kernel_size=1)
self.clip_projector = AttentionPoolingBlock(
dim=pretrain_embed_dim,
num_heads=attnpool_num_heads,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
norm_layer=norm_layer,
out_dim=clip_embed_dim)
self.fc_norm = build_norm_layer(clip_embed_dim, norm_layer, eps=1e-6)
self.head = nn.Linear(
clip_embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.num_layers = len(depths)
self.apply(self._init_weights)
self.apply(self._init_deform_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _init_deform_weights(self, m):
if isinstance(m, self.core_op):
m._reset_parameters()
@torch.jit.ignore
def lr_decay_keywords(self, decay_ratio=0.87):
lr_ratios = {}
# blocks
idx = 0
for i in range(4):
layer_num = 3 - i # 3 2 1 0
for j in range(self.depths[layer_num]):
block_num = self.depths[layer_num] - j - 1
tag = 'levels.{}.blocks.{}.'.format(layer_num, block_num)
decay = 1.0 * (decay_ratio ** idx)
lr_ratios[tag] = decay
idx += 1
# patch_embed (before stage-1)
lr_ratios['patch_embed'] = lr_ratios['levels.0.blocks.0.']
# levels.0.downsample (between stage-1 and stage-2)
lr_ratios['levels.0.downsample'] = lr_ratios['levels.1.blocks.0.']
lr_ratios['levels.0.norm'] = lr_ratios['levels.1.blocks.0.']
# levels.1.downsample (between stage-2 and stage-3)
lr_ratios['levels.1.downsample'] = lr_ratios['levels.2.blocks.0.']
lr_ratios['levels.1.norm'] = lr_ratios['levels.2.blocks.0.']
# levels.2.downsample (between stage-3 and stage-4)
lr_ratios['levels.2.downsample'] = lr_ratios['levels.3.blocks.0.']
lr_ratios['levels.2.norm'] = lr_ratios['levels.3.blocks.0.']
return lr_ratios
def forward_features_seq_out(self, x):
x = self.patch_embed(x)
x = self.pos_drop(x)
seq_out = []
for level in self.levels:
x, x_ = level(x, return_wo_downsample=True)
seq_out.append(x_)
return seq_out
def forward_features(self, x):
xs = self.forward_features_seq_out(x)
x1, x2, x3, x4 = xs
x1 = x1.permute(0, 3, 1, 2) # NHWC -> NCHW
x2 = x2.permute(0, 3, 1, 2) # NHWC -> NCHW
x3 = x3.permute(0, 3, 1, 2) # NHWC -> NCHW
x4 = x4.permute(0, 3, 1, 2) # NHWC -> NCHW
hidden_states = [x1, x2, x3, x4]
if self.num_classes > 0:
x = self.conv_head(x4)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return {
'hidden_states': hidden_states,
'pooler_output': x if self.num_classes > 0 else None
}
def forward_clip_projector(self, x): # for InternImage-H/G
xs = self.forward_features_seq_out(x)
x1, x2, x3, x4 = xs
x1 = x1.permute(0, 3, 1, 2) # NHWC -> NCHW
x2 = x2.permute(0, 3, 1, 2) # NHWC -> NCHW
x3 = x3.permute(0, 3, 1, 2) # NHWC -> NCHW
x4 = x4.permute(0, 3, 1, 2) # NHWC -> NCHW
hidden_states = [x1, x2, x3, x4]
if self.num_classes > 0:
x4 = self.dcnv3_head_x4(x4)
x = x4
x3 = self.dcnv3_head_x3(x3)
x = x + x3
x = x.flatten(-2).transpose(1, 2).contiguous()
x = self.clip_projector(x)
x = self.fc_norm(x)
return {
'hidden_states': hidden_states,
'pooler_output': x if self.num_classes > 0 else None
}
def forward(self, x):
if self.use_clip_projector: # for InternImage-H/G
outputs = self.forward_clip_projector(x)
else: # for InternImage-T/S/B/L/XL
outputs = self.forward_features(x)
hidden_states = outputs['hidden_states']
pooler_output = outputs['pooler_output']
if self.num_classes > 0:
logits = self.head(pooler_output)
else:
logits = None
return BackboneOutput(
hidden_states=hidden_states,
last_hidden_state=hidden_states[-1],
pooler_output=pooler_output,
logits=logits
)
class InternImageModel(PreTrainedModel):
config_class = InternImageConfig
def __init__(self, config):
super().__init__(config)
self.model = InternImage(
core_op=config.core_op,
channels=config.channels,
depths=config.depths,
groups=config.groups,
num_classes=0,
mlp_ratio=config.mlp_ratio,
drop_rate=config.drop_rate,
drop_path_rate=config.drop_path_rate,
drop_path_type=config.drop_path_type,
act_layer=config.act_layer,
norm_layer=config.norm_layer,
layer_scale=config.layer_scale,
offset_scale=config.offset_scale,
post_norm=config.post_norm,
cls_scale=config.cls_scale,
with_cp=config.with_cp,
dw_kernel_size=config.dw_kernel_size, # for InternImage-H/G
use_clip_projector=config.use_clip_projector, # for InternImage-H/G
level2_post_norm=config.level2_post_norm, # for InternImage-H/G
level2_post_norm_block_ids=config.level2_post_norm_block_ids, # for InternImage-H/G
res_post_norm=config.res_post_norm, # for InternImage-H/G
center_feature_scale=config.center_feature_scale, # for InternImage-H/G
remove_center=config.remove_center, # for InternImage-H/G
)
def forward(self, tensor):
return self.model.forward_features(tensor)
class InternImageModelForImageClassification(PreTrainedModel):
config_class = InternImageConfig
def __init__(self, config):
super().__init__(config)
self.model = InternImage(
core_op=config.core_op,
channels=config.channels,
depths=config.depths,
groups=config.groups,
num_classes=config.num_classes,
mlp_ratio=config.mlp_ratio,
drop_rate=config.drop_rate,
drop_path_rate=config.drop_path_rate,
drop_path_type=config.drop_path_type,
act_layer=config.act_layer,
norm_layer=config.norm_layer,
layer_scale=config.layer_scale,
offset_scale=config.offset_scale,
post_norm=config.post_norm,
cls_scale=config.cls_scale,
with_cp=config.with_cp,
dw_kernel_size=config.dw_kernel_size, # for InternImage-H/G
use_clip_projector=config.use_clip_projector, # for InternImage-H/G
level2_post_norm=config.level2_post_norm, # for InternImage-H/G
level2_post_norm_block_ids=config.level2_post_norm_block_ids, # for InternImage-H/G
res_post_norm=config.res_post_norm, # for InternImage-H/G
center_feature_scale=config.center_feature_scale, # for InternImage-H/G
remove_center=config.remove_center, # for InternImage-H/G
)
def forward(self, tensor, labels=None):
outputs = self.model.forward(tensor)
if labels is not None:
logits = outputs['logits']
loss = F.cross_entropy(logits, labels)
outputs['loss'] = loss
return outputs