File size: 12,467 Bytes
fa0537d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# --------------------------------------------------------
# InternImage
# Copyright (c) 2025 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from __future__ import absolute_import, division, print_function
import warnings
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import constant_, xavier_uniform_
from .dcnv3_func import DCNv3Function, dcnv3_core_pytorch, has_cuda_kernel
class to_channels_first(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
class to_channels_last(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
def build_norm_layer(dim,
norm_layer,
in_format='channels_last',
out_format='channels_last',
eps=1e-6):
layers = []
if norm_layer == 'BN':
if in_format == 'channels_last':
layers.append(to_channels_first())
layers.append(nn.BatchNorm2d(dim))
if out_format == 'channels_last':
layers.append(to_channels_last())
elif norm_layer == 'LN':
if in_format == 'channels_first':
layers.append(to_channels_last())
layers.append(nn.LayerNorm(dim, eps=eps))
if out_format == 'channels_first':
layers.append(to_channels_first())
else:
raise NotImplementedError(
f'build_norm_layer does not support {norm_layer}')
return nn.Sequential(*layers)
def build_act_layer(act_layer):
if act_layer == 'ReLU':
return nn.ReLU(inplace=True)
elif act_layer == 'SiLU':
return nn.SiLU(inplace=True)
elif act_layer == 'GELU':
return nn.GELU()
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
def _is_power_of_2(n):
if (not isinstance(n, int)) or (n < 0):
raise ValueError(
'invalid input for _is_power_of_2: {} (type: {})'.format(n, type(n)))
return (n & (n - 1) == 0) and n != 0
class CenterFeatureScaleModule(nn.Module):
def forward(self,
query,
center_feature_scale_proj_weight,
center_feature_scale_proj_bias):
center_feature_scale = F.linear(query,
weight=center_feature_scale_proj_weight,
bias=center_feature_scale_proj_bias).sigmoid()
return center_feature_scale
class DCNv3_pytorch(nn.Module):
def __init__(
self,
channels=64,
kernel_size=3,
dw_kernel_size=None,
stride=1,
pad=1,
dilation=1,
group=4,
offset_scale=1.0,
act_layer='GELU',
norm_layer='LN',
center_feature_scale=False,
remove_center=False,
):
"""
DCNv3 Module
:param channels
:param kernel_size
:param stride
:param pad
:param dilation
:param group
:param offset_scale
:param act_layer
:param norm_layer
"""
super().__init__()
if channels % group != 0:
raise ValueError(
f'channels must be divisible by group, but got {channels} and {group}')
_d_per_group = channels // group
dw_kernel_size = dw_kernel_size if dw_kernel_size is not None else kernel_size
# you'd better set _d_per_group to a power of 2 which is more efficient in our CUDA implementation
if not _is_power_of_2(_d_per_group):
warnings.warn(
"You'd better set channels in DCNv3 to make the dimension of each attention head a power of 2 "
'which is more efficient in our CUDA implementation.')
self.offset_scale = offset_scale
self.channels = channels
self.kernel_size = kernel_size
self.dw_kernel_size = dw_kernel_size
self.stride = stride
self.dilation = dilation
self.pad = pad
self.group = group
self.group_channels = channels // group
self.offset_scale = offset_scale
self.center_feature_scale = center_feature_scale
self.remove_center = int(remove_center)
self.dw_conv = nn.Sequential(
nn.Conv2d(
channels,
channels,
kernel_size=dw_kernel_size,
stride=1,
padding=(dw_kernel_size - 1) // 2,
groups=channels),
build_norm_layer(
channels,
norm_layer,
'channels_first',
'channels_last'),
build_act_layer(act_layer))
self.offset = nn.Linear(
channels,
group * (kernel_size * kernel_size - remove_center) * 2)
self.mask = nn.Linear(
channels,
group * (kernel_size * kernel_size - remove_center))
self.input_proj = nn.Linear(channels, channels)
self.output_proj = nn.Linear(channels, channels)
self._reset_parameters()
if center_feature_scale:
self.center_feature_scale_proj_weight = nn.Parameter(
torch.zeros((group, channels), dtype=torch.float))
self.center_feature_scale_proj_bias = nn.Parameter(
torch.tensor(0.0, dtype=torch.float).view((1,)).repeat(group, ))
self.center_feature_scale_module = CenterFeatureScaleModule()
def _reset_parameters(self):
constant_(self.offset.weight.data, 0.)
constant_(self.offset.bias.data, 0.)
constant_(self.mask.weight.data, 0.)
constant_(self.mask.bias.data, 0.)
xavier_uniform_(self.input_proj.weight.data)
constant_(self.input_proj.bias.data, 0.)
xavier_uniform_(self.output_proj.weight.data)
constant_(self.output_proj.bias.data, 0.)
def forward(self, input):
"""
:param query (N, H, W, C)
:return output (N, H, W, C)
"""
N, H, W, _ = input.shape
x = self.input_proj(input)
x_proj = x
x1 = input.permute(0, 3, 1, 2)
x1 = self.dw_conv(x1)
offset = self.offset(x1)
mask = self.mask(x1).reshape(N, H, W, self.group, -1)
mask = F.softmax(mask, -1).reshape(N, H, W, -1)
x = dcnv3_core_pytorch(
x, offset, mask,
self.kernel_size, self.kernel_size,
self.stride, self.stride,
self.pad, self.pad,
self.dilation, self.dilation,
self.group, self.group_channels,
self.offset_scale, self.remove_center)
if self.center_feature_scale:
center_feature_scale = self.center_feature_scale_module(
x1, self.center_feature_scale_proj_weight, self.center_feature_scale_proj_bias)
# N, H, W, groups -> N, H, W, groups, 1 -> N, H, W, groups, _d_per_group -> N, H, W, channels
center_feature_scale = center_feature_scale[..., None].repeat(
1, 1, 1, 1, self.channels // self.group).flatten(-2)
x = x * (1 - center_feature_scale) + x_proj * center_feature_scale
x = self.output_proj(x)
return x
class DCNv3(nn.Module):
def __init__(
self,
channels=64,
kernel_size=3,
dw_kernel_size=None,
stride=1,
pad=1,
dilation=1,
group=4,
offset_scale=1.0,
act_layer='GELU',
norm_layer='LN',
center_feature_scale=False,
remove_center=False,
):
"""
DCNv3 Module
:param channels
:param kernel_size
:param stride
:param pad
:param dilation
:param group
:param offset_scale
:param act_layer
:param norm_layer
"""
super().__init__()
if channels % group != 0:
raise ValueError(
f'channels must be divisible by group, but got {channels} and {group}')
_d_per_group = channels // group
dw_kernel_size = dw_kernel_size if dw_kernel_size is not None else kernel_size
# you'd better set _d_per_group to a power of 2 which is more efficient in our CUDA implementation
if not _is_power_of_2(_d_per_group):
warnings.warn(
"You'd better set channels in DCNv3 to make the dimension of each attention head a power of 2 "
'which is more efficient in our CUDA implementation.')
self.offset_scale = offset_scale
self.channels = channels
self.kernel_size = kernel_size
self.dw_kernel_size = dw_kernel_size
self.stride = stride
self.dilation = dilation
self.pad = pad
self.group = group
self.group_channels = channels // group
self.offset_scale = offset_scale
self.center_feature_scale = center_feature_scale
self.remove_center = int(remove_center)
if self.remove_center and self.kernel_size % 2 == 0:
raise ValueError('remove_center is only compatible with odd kernel size.')
self.dw_conv = nn.Sequential(
nn.Conv2d(
channels,
channels,
kernel_size=dw_kernel_size,
stride=1,
padding=(dw_kernel_size - 1) // 2,
groups=channels),
build_norm_layer(
channels,
norm_layer,
'channels_first',
'channels_last'),
build_act_layer(act_layer))
self.offset = nn.Linear(
channels,
group * (kernel_size * kernel_size - remove_center) * 2)
self.mask = nn.Linear(
channels,
group * (kernel_size * kernel_size - remove_center))
self.input_proj = nn.Linear(channels, channels)
self.output_proj = nn.Linear(channels, channels)
self._reset_parameters()
if center_feature_scale:
self.center_feature_scale_proj_weight = nn.Parameter(
torch.zeros((group, channels), dtype=torch.float))
self.center_feature_scale_proj_bias = nn.Parameter(
torch.tensor(0.0, dtype=torch.float).view((1,)).repeat(group, ))
self.center_feature_scale_module = CenterFeatureScaleModule()
def _reset_parameters(self):
constant_(self.offset.weight.data, 0.)
constant_(self.offset.bias.data, 0.)
constant_(self.mask.weight.data, 0.)
constant_(self.mask.bias.data, 0.)
xavier_uniform_(self.input_proj.weight.data)
constant_(self.input_proj.bias.data, 0.)
xavier_uniform_(self.output_proj.weight.data)
constant_(self.output_proj.bias.data, 0.)
def forward(self, input):
"""
:param query (N, H, W, C)
:return output (N, H, W, C)
"""
N, H, W, _ = input.shape
x = self.input_proj(input)
x_proj = x
dtype = x.dtype
x1 = input.permute(0, 3, 1, 2)
x1 = self.dw_conv(x1)
offset = self.offset(x1)
mask = self.mask(x1).reshape(N, H, W, self.group, -1)
mask = F.softmax(mask, -1)
mask = mask.reshape(N, H, W, -1).type(dtype)
x = DCNv3Function.apply(
x, offset, mask,
self.kernel_size, self.kernel_size,
self.stride, self.stride,
self.pad, self.pad,
self.dilation, self.dilation,
self.group, self.group_channels,
self.offset_scale,
256,
self.remove_center)
if self.center_feature_scale:
center_feature_scale = self.center_feature_scale_module(
x1, self.center_feature_scale_proj_weight, self.center_feature_scale_proj_bias)
# N, H, W, groups -> N, H, W, groups, 1 -> N, H, W, groups, _d_per_group -> N, H, W, channels
center_feature_scale = center_feature_scale[..., None].repeat(
1, 1, 1, 1, self.channels // self.group).flatten(-2)
x = x * (1 - center_feature_scale) + x_proj * center_feature_scale
x = self.output_proj(x)
return x
|