lixinhao commited on
Commit
60c8e7f
·
verified ·
1 Parent(s): c9bac54

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -21,21 +21,20 @@ from transformers import AutoModel
21
  from modeling_internvideo2 import (retrieve_text, vid2tensor, _frame_from_video,)
22
 
23
 
24
- if __name__ == '__main__':
25
- model = AutoModel.from_pretrained("OpenGVLab/InternVideo2-Stage2_6B", trust_remote_code=True).eval()
26
-
27
- video = cv2.VideoCapture('example1.mp4')
28
- frames = [x for x in _frame_from_video(video)]
29
- text_candidates = ["A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon.",
30
- "A man in a gray coat walks through the snowy landscape, pulling a sleigh loaded with toys.",
31
- "A person dressed in a blue jacket shovels the snow-covered pavement outside their house.",
32
- "A cat excitedly runs through the yard, chasing a rabbit.",
33
- "A person bundled up in a blanket walks through the snowy landscape, enjoying the serene winter scenery."]
34
-
35
- texts, probs = retrieve_text(frames, text_candidates, model=model, topk=5)
36
- for t, p in zip(texts, probs):
37
- print(f'text: {t} ~ prob: {p:.4f}')
38
-
39
- vidtensor = vid2tensor('example1.mp4', fnum=4)
40
- feat = model.get_vid_feat(vidtensor)
41
  ```
 
21
  from modeling_internvideo2 import (retrieve_text, vid2tensor, _frame_from_video,)
22
 
23
 
24
+ model = AutoModel.from_pretrained("OpenGVLab/InternVideo2-Stage2_6B", trust_remote_code=True).eval()
25
+
26
+ video = cv2.VideoCapture('example1.mp4')
27
+ frames = [x for x in _frame_from_video(video)]
28
+ text_candidates = ["A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon.",
29
+ "A man in a gray coat walks through the snowy landscape, pulling a sleigh loaded with toys.",
30
+ "A person dressed in a blue jacket shovels the snow-covered pavement outside their house.",
31
+ "A cat excitedly runs through the yard, chasing a rabbit.",
32
+ "A person bundled up in a blanket walks through the snowy landscape, enjoying the serene winter scenery."]
33
+
34
+ texts, probs = retrieve_text(frames, text_candidates, model=model, topk=5)
35
+ for t, p in zip(texts, probs):
36
+ print(f'text: {t} ~ prob: {p:.4f}')
37
+
38
+ vidtensor = vid2tensor('example1.mp4', fnum=4)
39
+ feat = model.get_vid_feat(vidtensor)
 
40
  ```
__pycache__/modeling_internvideo2.cpython-310.pyc ADDED
Binary file (95.7 kB). View file
 
configs/beit-base-patch16-224-pt22k-ft22k.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "note": "this file is a copy of the BEiT model config, not used directly",
3
+ "architectures": [
4
+ "BeitForImageClassification"
5
+ ],
6
+ "url": "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k/raw/main/config.json",
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "drop_path_rate": 0.1,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.0,
11
+ "hidden_size": 768,
12
+ "image_size": 224,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "layer_scale_init_value": 0.1,
17
+ "model_type": "beit",
18
+ "num_attention_heads": 12,
19
+ "num_channels": 3,
20
+ "num_hidden_layers": 12,
21
+ "patch_size": 16,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.11.0.dev0",
24
+ "use_absolute_position_embeddings": false,
25
+ "use_mask_token": false,
26
+ "use_mean_pooling": true,
27
+ "use_relative_position_bias": true,
28
+ "use_shared_relative_position_bias": false,
29
+ "vocab_size": 8192
30
+ }
configs/config_bert_large.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "gradient_checkpointing": false,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 1024,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 4096,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 24,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "type_vocab_size": 2,
20
+ "use_cache": true,
21
+ "vocab_size": 30522,
22
+ "fusion_layer": 19,
23
+ "encoder_width": 768,
24
+ "cross_module": "ca"
25
+ }
configs/med_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "add_type_embeddings": false,
18
+ "vocab_size": 30522,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true,
21
+ "cross_freq": 0
22
+ }
configs/med_large_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "add_type_embeddings": false,
18
+ "vocab_size": 30522,
19
+ "encoder_width": 1024,
20
+ "add_cross_attention": true,
21
+ "cross_freq": 0
22
+ }
configs/model.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pretrained_paths = dict(
2
+ BEATs_PATH="/mnt/petrelfs/lixinhao/lxh_exp/pretrained_models/beats/BEATs_iter3+.pt",
3
+ UMT_S1_B_PATH="/mnt/lustre/share/videointern/annotations/pretained_model/clipmae_vit_b16_k710_e200.pth",
4
+ UMT_S1_L_PATH="/mnt/lustre/share/videointern/annotations/pretained_model/clipmae_vit_l16_k710_e200.pth",
5
+ UMT_S1_g_PATH='/mnt/petrelfs/share_data/likunchang/model/um_teacher/umt2/vit_g14_1.1M_CLIP+MAE_300e_pt_k710_ft.pth',
6
+ InternVL_6B_PATH = "/mnt/petrelfs/share_data/wangwenhai/internvl/6b_vit_exp126_clip_alpaca_7b_laion5b_peak_1e-5_256gpu_all_trainable_degradation.sh/1499/mp_rank_00_model_states.pt"
7
+ )
8
+
9
+
10
+ VisionEncoders = dict()
11
+ VisionEncoders["beit"] = dict(
12
+ name="beit_base",
13
+ pretrained="microsoft/beit-base-patch16-224-pt22k-ft22k",
14
+ d_model=768,
15
+ )
16
+ VisionEncoders["beit_large"] = dict(
17
+ name="beit_large",
18
+ pretrained="microsoft/beit-large-patch16-224-pt22k-ft22k",
19
+ d_model=1024,
20
+ )
21
+
22
+ TextEncoders = dict()
23
+ TextEncoders["bert"] = dict(
24
+ name="bert_base",
25
+ pretrained="bert-base-uncased",
26
+ config="configs/config_bert.json",
27
+ d_model=768,
28
+ fusion_layer=9,
29
+ )
30
+ TextEncoders["bert_fusion6"] = dict(
31
+ name="bert_base_fusion6",
32
+ pretrained="bert-base-uncased",
33
+ config="configs/config_bert_fusion6.json",
34
+ d_model=768,
35
+ fusion_layer=6,
36
+ )
37
+ TextEncoders["bert_large"] = dict(
38
+ name="bert_large",
39
+ pretrained="bert-large-uncased",
40
+ config="configs/config_bert_large.json",
41
+ d_model=1024,
42
+ fusion_layer=19,
43
+ )
44
+ TextEncoders["med_bert"] = dict(
45
+ name="med_bert_base",
46
+ pretrained="bert-base-uncased",
47
+ config="configs/med_config.json",
48
+ d_model=768,
49
+ )
50
+ TextEncoders["med_bert_freq2"] = dict(
51
+ name="med_bert_base_freq2",
52
+ pretrained="bert-base-uncased",
53
+ config="configs/med_config_freq2.json",
54
+ d_model=768,
55
+ )
56
+ TextEncoders["med_bert_freq2_must"] = dict(
57
+ name="med_bert_base_freq2_must",
58
+ pretrained="bert-base-uncased",
59
+ config="configs/med_config_freq2_must.json",
60
+ d_model=768,
61
+ )
62
+
63
+ TextEncoders["med_bert_fusion10"] = dict(
64
+ name="med_bert_base_fusion",
65
+ pretrained="bert-base-uncased",
66
+ config="configs/med_config_fusion.json",
67
+ d_model=768,
68
+ fusion_layer=10
69
+ )
70
+ TextEncoders["med_bert_fusion9"] = dict(
71
+ name="med_bert_base_fusion",
72
+ pretrained="bert-base-uncased",
73
+ config="configs/med_config_fusion.json",
74
+ d_model=768,
75
+ fusion_layer=9
76
+ )
77
+ TextEncoders["med_bert_fusion6"] = dict(
78
+ name="med_bert_base_fusion",
79
+ pretrained="bert-base-uncased",
80
+ config="configs/med_config_fusion.json",
81
+ d_model=768,
82
+ fusion_layer=6
83
+ )
84
+ TextEncoders["med_bert_fusion0"] = dict(
85
+ name="med_bert_base_fusion",
86
+ pretrained="bert-base-uncased",
87
+ config="configs/med_config_fusion.json",
88
+ d_model=768,
89
+ fusion_layer=0
90
+ )
91
+ TextEncoders["med_bert_fusion3"] = dict(
92
+ name="med_bert_base_fusion",
93
+ pretrained="bert-base-uncased",
94
+ config="configs/med_config_fusion.json",
95
+ d_model=768,
96
+ fusion_layer=3
97
+ )
98
+ TextEncoders["med_bert_large"] = dict(
99
+ name="med_bert_large",
100
+ pretrained="bert-base-uncased", # not a bug, it just follows BLIP.
101
+ config="configs/med_large_config.json",
102
+ d_model=768
103
+ )
configs/pretrain.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .data import *
2
+ from .model import *
3
+
4
+ # ========================= data ==========================
5
+ train_corpus = "webvid_cc3m"
6
+ train_file = "${available_corpus[${train_corpus}]}" # for lazy evaluation
7
+ test_file = dict(msrvtt_1k_test=available_corpus["msrvtt_1k_test"])
8
+ test_types = ["msrvtt_1k_test"]
9
+ num_workers = 6
10
+
11
+ stop_key = None
12
+
13
+ # ========================= input ==========================
14
+ num_frames = 4
15
+ num_frames_test = 4
16
+ batch_size = 64
17
+ max_txt_l = 32
18
+
19
+ inputs = dict(
20
+ image_res=224,
21
+ video_input=dict(
22
+ num_frames="${num_frames}",
23
+ sample_type="rand",
24
+ num_frames_test="${num_frames_test}",
25
+ sample_type_test="middle",
26
+ random_aug=False,
27
+ ),
28
+ max_txt_l=dict(image="${max_txt_l}", video="${max_txt_l}"),
29
+ batch_size=dict(image="${batch_size}", video="${batch_size}"),
30
+ batch_size_test=dict(image="${batch_size}", video="${batch_size}"),
31
+ )
32
+
33
+ # ========================= model ==========================
34
+ vision_enc = "beit"
35
+ text_enc = "bert"
36
+ model = dict(
37
+ vision_encoder="${VisionEncoders[${vision_enc}]}",
38
+ text_encoder="${TextEncoders[${text_enc}]}",
39
+ temporal_modeling=dict(
40
+ num_frames="${num_frames}",
41
+ temporal_model_block="timesformer",
42
+ temporal_model_position="last",
43
+ temporal_model_config=dict(input_dim="${model.vision_encoder.d_model}"),
44
+ use_temporal_position_embedding=True,
45
+ ),
46
+ vit_add_ln=True,
47
+ multimodal=dict(enable=True),
48
+ embed_dim=256,
49
+ temp=0.07,
50
+ )
51
+
52
+ criterion = dict(
53
+ loss_weight=dict(vtc=1.0, mlm=1.0, vtm=1.0, mvm=0.0), # 0: disabled.
54
+ vtm_hard_neg=True,
55
+ mlm_masking_prob=0.5,
56
+ )
57
+
58
+ optimizer = dict(
59
+ opt="adamW",
60
+ lr=1e-4,
61
+ opt_betas=[0.9, 0.999], # default
62
+ weight_decay=0.02,
63
+ max_grad_norm=-1, # requires a positive float, use -1 to disable
64
+ # use a different lr for some modules, e.g., larger lr for new modules
65
+ different_lr=dict(enable=False, module_names=[], lr=1e-3),
66
+ )
67
+
68
+ scheduler = dict(sched="cosine", epochs=10, min_lr_multi=0.01, warmup_epochs=1)
69
+
70
+ evaluate = False
71
+ deep_fusion = False
72
+ evaluation = dict(
73
+ eval_frame_ensemble="concat", # [concat, max, mean, lse]
74
+ eval_x_only=False,
75
+ k_test=128,
76
+ eval_offload=True, # offload gpu tensors to cpu to save memory.
77
+ )
78
+
79
+ fp16 = True
80
+ gradient_checkpointing = True
81
+
82
+ # ========================= wandb ==========================
83
+ wandb = dict(
84
+ enable=True,
85
+ entity="likunchang", # username or team name to store the runs, see https://docs.wandb.ai/ref/python/init
86
+ project="vindlu", # setup in your command line
87
+ )
88
+ dist_url = "env://"
89
+ device = "cuda"
90
+ mode = "pt"
91
+
92
+ # ========================= others ==========================
93
+ output_dir = None # output dir
94
+ resume = False # if True, load optimizer and scheduler states as well
95
+ debug = False
96
+ log_freq = 100
97
+ seed = 42
98
+
99
+ save_latest = True
100
+ auto_resume = True
101
+ pretrained_path = "" # path to pretrained model weights, for resume only?
configs/qa.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ criterion["loss_weight"]["mlm"] = 0.0
6
+ scheduler["warmup_epochs"] = 0.5
7
+
8
+ max_txt_l = 32
9
+ batch_size = 32
10
+ num_frames = 12
11
+
12
+ optimizer["lr"] = 1e-5
13
+ log_freq = 100
14
+
15
+ # =========additional args for VQA ============
16
+ eos = "[SEP]"
17
+ max_q_len = 25
18
+ max_a_len = 5
19
+ # =========end ================================
20
+
configs/qa_anet.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .qa import *
2
+
3
+ train_file = [
4
+ [
5
+ f"{anno_root_downstream}/anet_qa_train.json",
6
+ f"{data_root}/activity_net_2fps_360",
7
+ "video",
8
+ ]
9
+ ]
10
+ test_file = dict(
11
+ val=[
12
+ f"{anno_root_downstream}/anet_qa_val.json",
13
+ f"{data_root}/activity_net_2fps_360",
14
+ "video",
15
+ ],
16
+ test=[
17
+ f"{anno_root_downstream}/anet_qa_test.json",
18
+ f"{data_root}/activity_net_2fps_360",
19
+ "video",
20
+ ]
21
+ )
22
+ dataset_name = "anet"
23
+
24
+ answer_list = f"{anno_root_downstream}/anet_qa_answer_list.json" # list of answer words
25
+
26
+ test_types = ["val"]
27
+ stop_key = "val" # used to choose the best ckpt. If None, save the last.
configs/qa_msrvtt.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .qa import *
2
+
3
+ train_file = [
4
+ [
5
+ f"{anno_root_downstream}/msrvtt_qa_train.json",
6
+ f"{data_root}/msrvtt_2fps_224",
7
+ "video",
8
+ ]
9
+ ]
10
+ test_file = dict(
11
+ val=[
12
+ f"{anno_root_downstream}/msrvtt_qa_val.json",
13
+ f"{data_root}/msrvtt_2fps_224",
14
+ "video",
15
+ ],
16
+ test=[
17
+ f"{anno_root_downstream}/msrvtt_qa_test.json",
18
+ f"{data_root}/msrvtt_2fps_224",
19
+ "video",
20
+ ],
21
+ )
22
+ dataset_name = "msrvtt"
23
+
24
+ answer_list = f"{anno_root_downstream}/msrvtt_qa_answer_list.json" # list of answer words
25
+
26
+ test_types = ["val"]
27
+ stop_key = "val" # used to choose the best ckpt. If None, save the last.
configs/ret_anet.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/anet_ret_train.json",
7
+ f"{data_root}/activity_net_2fps_360",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ test=[
12
+ f"{anno_root_downstream}/anet_ret_val_1.json",
13
+ f"{data_root}/activity_net_2fps_360",
14
+ "video",
15
+ ],
16
+ )
17
+
18
+ test_types = ["test"]
19
+ stop_key = "test/" # used to choose the best ckpt. If None, save the last.
20
+ is_paragraph_retrieval = True
21
+
22
+ max_txt_l = 64
23
+ batch_size = 32
24
+ num_frames = 12
25
+
26
+ optimizer["lr"] = 1e-5
27
+ log_freq = 100
configs/ret_coco.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/coco_train.json",
7
+ f"{data_root}/coco",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ val=[
12
+ f"{anno_root_downstream}/coco_val.json",
13
+ f"{data_root}/coco",
14
+ "video",
15
+ ],
16
+ test=[
17
+ f"{anno_root_downstream}/coco_test.json",
18
+ f"{data_root}/coco",
19
+ "video",
20
+ ],
21
+ )
22
+
23
+ test_types = ["val"]
24
+ stop_key = "val/" # used to choose the best ckpt. If None, save the last.
25
+ is_paragraph_retrieval = False
26
+
27
+ criterion["loss_weight"]["mlm"] = 0.0
28
+ scheduler["warmup_epochs"] = 0
29
+ optimizer["lr"] = 1e-5
30
+
31
+
32
+ max_txt_l = 22
33
+ batch_size = 128
34
+ num_frames = 1
35
+ num_frames_test = 1
36
+
37
+ log_freq = 100
configs/ret_didemo.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/didemo_ret_train.json",
7
+ f"{data_root}/didemo_2fps_360_trimed30",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ val=[
12
+ f"{anno_root_downstream}/didemo_ret_val.json",
13
+ f"{data_root}/didemo_2fps_360_trimed30",
14
+ "video",
15
+ ],
16
+ test=[
17
+ f"{anno_root_downstream}/didemo_ret_test.json",
18
+ f"{data_root}/didemo_2fps_360_trimed30",
19
+ "video",
20
+ ],
21
+ )
22
+
23
+ test_types = ["val"]
24
+ stop_key = "val/" # used to choose the best ckpt. If None, save the last.
25
+ is_paragraph_retrieval = True
26
+
27
+ criterion["loss_weight"]["mlm"] = 0.0
28
+ scheduler["warmup_epochs"] = 0
29
+ optimizer["lr"] = 1e-5
30
+
31
+
32
+ max_txt_l = 64
33
+ batch_size = 32
34
+ num_frames = 12
35
+
36
+ log_freq = 10
configs/ret_flickr.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/flickr30k_train.json",
7
+ f"{data_root}/f30k",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ val=[
12
+ f"{anno_root_downstream}/flickr30k_val.json",
13
+ f"{data_root}/f30k",
14
+ "video",
15
+ ],
16
+ test=[
17
+ f"{anno_root_downstream}/flickr30k_test.json",
18
+ f"{data_root}/f30k",
19
+ "video",
20
+ ],
21
+ )
22
+
23
+ test_types = ["val"]
24
+ stop_key = "val/" # used to choose the best ckpt. If None, save the last.
25
+ is_paragraph_retrieval = False
26
+
27
+ criterion["loss_weight"]["mlm"] = 0.0
28
+ scheduler["warmup_epochs"] = 0
29
+ optimizer["lr"] = 1e-5
30
+
31
+
32
+ max_txt_l = 32
33
+ batch_size = 128
34
+ num_frames = 1
35
+ num_frames_test = 1
36
+
37
+ log_freq = 100
configs/ret_msrvtt.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/msrvtt_ret_train7k.json",
7
+ f"{data_root}/msrvtt_2fps_224",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ test=[
12
+ f"{anno_root_downstream}/msrvtt_ret_test1k.json",
13
+ f"{data_root}/msrvtt_2fps_224",
14
+ "video",
15
+ ],
16
+ )
17
+
18
+ test_types = ["test"]
19
+ stop_key = None # used to choose the best ckpt. If None, save the last.
20
+ is_paragraph_retrieval = False
21
+
22
+ criterion["loss_weight"]["mlm"] = 0.0
23
+ scheduler["warmup_epochs"] = 0
24
+ scheduler["epochs"] = 5
25
+ optimizer["lr"] = 1e-5
26
+
27
+ max_txt_l = 32
28
+ batch_size = 32
29
+ num_frames = 12
30
+
31
+ log_freq = 100
configs/ret_msrvtt_9k.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .ret_msrvtt import *
2
+
3
+ train_file = [
4
+ f"{anno_root_downstream}/msrvtt_ret_train9k.json",
5
+ f"{data_root}/msrvtt_2fps_224",
6
+ "video",
7
+ ]
configs/ret_msrvtt_mc.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/msrvtt_ret_train7k.json",
7
+ f"{data_root}/msrvtt_2fps_224",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ mc_test=[
12
+ f"{anno_root_downstream}/msrvtt_mc_test.json",
13
+ f"{data_root}/msrvtt_2fps_224",
14
+ "video",
15
+ ]
16
+ )
17
+
18
+ test_types = ["mc_test"]
19
+ stop_key = None # used to choose the best ckpt. If None, save the last.
20
+ is_paragraph_retrieval = False
21
+
22
+ criterion["loss_weight"]["mlm"] = 0.0
23
+ scheduler["warmup_epochs"] = 0
24
+ optimizer["lr"] = 1e-5
25
+
26
+ max_txt_l = 32
27
+ batch_size = 32
28
+ num_frames = 12
29
+
30
+ log_freq = 100
configs/ret_ssv2_label.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .ret_msrvtt import *
2
+
3
+ train_file = [
4
+ f"{anno_root_downstream}/ssv2_ret_label_train.json",
5
+ f"{data_root}/ssv2",
6
+ "video",
7
+ ]
8
+ test_file = dict(
9
+ val=[
10
+ f"{anno_root_downstream}/ssv2_ret_label_val_small.json",
11
+ f"{data_root}/ssv2",
12
+ "video",
13
+ ],
14
+ )
15
+
16
+ test_types = ["val"]
17
+ stop_key = None # used to choose the best ckpt. If None, save the last.
18
+
19
+ has_multi_vision_gt = True
20
+
21
+ scheduler["epochs"] = 10
22
+ optimizer["lr"] = 1e-4
23
+
24
+ max_txt_l = 25
configs/ret_ssv2_template.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .ret_msrvtt import *
2
+
3
+ train_file = [
4
+ f"{anno_root_downstream}/ssv2_ret_template_train.json",
5
+ f"{data_root}/ssv2",
6
+ "video",
7
+ ]
8
+ test_file = dict(
9
+ val=[
10
+ f"{anno_root_downstream}/ssv2_ret_template_val_small.json",
11
+ f"{data_root}/ssv2",
12
+ "video",
13
+ ],
14
+ )
15
+
16
+ test_types = ["val"]
17
+ stop_key = None # used to choose the best ckpt. If None, save the last.
18
+
19
+ has_multi_vision_gt = True
20
+
21
+ scheduler["epochs"] = 10
22
+ optimizer["lr"] = 1e-4
23
+
24
+ max_txt_l = 22
configs/tvqa.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pretrain import *
2
+
3
+ del available_corpus
4
+
5
+ train_file = [
6
+ f"{anno_root_downstream}/tvqa_train_with_answer.json",
7
+ f"{data_root}/tvqa_trimmed_3fps",
8
+ "video",
9
+ ]
10
+ test_file = dict(
11
+ val=[
12
+ f"{anno_root_downstream}/tvqa_val_with_answer.json",
13
+ f"{data_root}/tvqa_trimmed_3fps",
14
+ "video",
15
+ ],
16
+ test=[
17
+ f"{anno_root_downstream}/tvqa_test_public_with_answer.json",
18
+ f"{data_root}/tvqa_trimmed_3fps",
19
+ "video",
20
+ ],
21
+ )
22
+
23
+ test_types = ["val"]
24
+ stop_key = "val" # used to choose the best ckpt. If None, save the last.
25
+ is_paragraph_retrieval = False
26
+
27
+ criterion["loss_weight"]["mlm"] = 0.0
28
+ optimizer["lr"] = 1e-5
29
+ scheduler["warmup_epochs"] = 0.5
30
+ scheduler["epochs"] = 10
31
+
32
+ max_txt_l = 150
33
+ batch_size = 32
34
+ num_frames = 12
35
+
36
+ log_freq = 100
demo.py CHANGED
@@ -4,7 +4,7 @@ from modeling_internvideo2 import (retrieve_text, vid2tensor, _frame_from_video,
4
 
5
 
6
  if __name__ == '__main__':
7
- model = AutoModel.from_pretrained("OpenGVLab/InternVideo2-Stage2_6B", trust_remote_code=True).eval()
8
 
9
  video = cv2.VideoCapture('example1.mp4')
10
  frames = [x for x in _frame_from_video(video)]
 
4
 
5
 
6
  if __name__ == '__main__':
7
+ model = AutoModel.from_pretrained("/mnt/petrelfs/lixinhao/lxh_exp/LongVideo/InternVideo2-Stage2_6B", trust_remote_code=True).eval()
8
 
9
  video = cv2.VideoCapture('example1.mp4')
10
  frames = [x for x in _frame_from_video(video)]
model-00001-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff33d7a2e4acea7ae18bc031824494c7965b2d42575350d1de86dbf6defccabf
3
- size 1843206224
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d177c77c6721ab4952bfeb8d4a71c5aa6869a9e589ecee95b1dd5341b02a240
3
+ size 1843206232
model-00002-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e2cca4e6660dde2902da2fa410c1302d52df62a8b58a72665a03481d72c1a3e8
3
- size 1966700200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98753c824d626ee1ae9897069e9712b023b59ed2186108305229bb1d1b742239
3
+ size 1966700208
model-00003-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:164727ed44d6336d06c494197b147e4dedc34b634832a7b44b38e56448d6d0da
3
- size 1966700216
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc1ad59447161718504b0e94ed9d84a0d7bd7da988cb6b06f6664edeb1715639
3
+ size 1966700224
model-00004-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:754fa2bc1568f5d3d62468751ff00dcf2b9dcd84ad4892e724f928e90b10aa02
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd4479e81e917ea371b1fe9a2a22165e4f22fbad535586c2db202566d23f5f78
3
+ size 1966700264
model-00005-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a276ef3fe48a3afdca1ff3cc1ef4ead5ab6a9aaaee3dc23f888736a594d3ac45
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f16ff3ed45cc235f5c85954ec72efdb3d0a9cc150ed1bd82dff3f32fdb2c5eae
3
+ size 1966700264
model-00006-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2edc5742d483c73cbdbefdc07af7ac1d70fa4929628208ee358d67a5e9383fcf
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b4fadad100d85dc055008b3d5f4c9dd78aac49446643ce919431b72ace26923
3
+ size 1966700264
model-00007-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cea98e7b9fed865a57dae3e387986fc243d7416f92ceee412d4c8fc22ae92ff0
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d32dbcb9d7cf502af70cd06b5a56655e05265cc5f5eef278fdcd7fd4d35caa3
3
+ size 1966700264
model-00008-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e81c54c8d8348dbc41efc74a934a71614af6a911b8c21c2afec1ecae588009c
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f990c3a412c64234de157f4fb656cfadad31b33ba76b1574b477e73469a38f4
3
+ size 1966700264
model-00009-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9341b354e09ae069f59e73a785a93d5f31dfb143387ec4560071a2ec08931238
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e29811441d6a41d3e57738e4f68537b06bd6ce7732cd593b520e1ae17da65272
3
+ size 1966700264
model-00010-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:98c84ff7d7318e8a87d30ac46ed62faa390fe58160a58d5972acd66848a7571d
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57e01270ed6a8adac71188c2bce2e1499dbabe06206cb808a7c296478121353b
3
+ size 1966700264
model-00011-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e75090d2bacfbe772ad5d7d9fa7005cdac6a71f3054173f3081bf061faeb592
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d4ef0dede046efe4304077af7b0ce03eab9bc0b8e0345eef8fd34a447717777
3
+ size 1966700264
model-00012-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14d8dae3e19e45d6fc9ffcc296309eabb93d7bd035f951ec0b5709777a5b19a4
3
- size 1966700256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a0162c3608fae39d2fb5ac73fc01d09d87a4d9ae22062bf9997c0a5e92b4b1
3
+ size 1966700264
model-00013-of-00013.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c069186f3ee85d825f2b3e2198f8c5ec26c47899c8469a958af0ff13f2e9c414
3
  size 1989231912
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6328c13ba3af85b8d0d5d9aad104041dc3934e6b1e42a4cc89dc95da6a04f42e
3
  size 1989231912
modeling_internvideo2.py CHANGED
@@ -532,17 +532,17 @@ class LayerScale(nn.Module):
532
  def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
533
  super().__init__()
534
  self.inplace = inplace
535
- self.gamma = nn.Parameter(init_values * torch.ones(dim))
536
  self.force_fp32 = force_fp32
537
 
538
  @torch.cuda.amp.autocast(enabled=False)
539
  def forward(self, x):
540
  if self.force_fp32:
541
  output_type = x.dtype
542
- out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float()
543
  return out.to(dtype=output_type)
544
  else:
545
- out = x.mul_(self.gamma) if self.inplace else x * self.gamma
546
  return out
547
 
548
 
 
532
  def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
533
  super().__init__()
534
  self.inplace = inplace
535
+ self.weight = nn.Parameter(init_values * torch.ones(dim))
536
  self.force_fp32 = force_fp32
537
 
538
  @torch.cuda.amp.autocast(enabled=False)
539
  def forward(self, x):
540
  if self.force_fp32:
541
  output_type = x.dtype
542
+ out = x.float().mul_(self.weight.float()) if self.inplace else x.float() * self.weight.float()
543
  return out.to(dtype=output_type)
544
  else:
545
+ out = x.mul_(self.weight) if self.inplace else x * self.weight
546
  return out
547
 
548