Upload folder using huggingface_hub
Browse files- README.md +16 -17
- __pycache__/modeling_internvideo2.cpython-310.pyc +0 -0
- configs/beit-base-patch16-224-pt22k-ft22k.json +30 -0
- configs/config_bert_large.json +25 -0
- configs/med_config.json +22 -0
- configs/med_large_config.json +22 -0
- configs/model.py +103 -0
- configs/pretrain.py +101 -0
- configs/qa.py +20 -0
- configs/qa_anet.py +27 -0
- configs/qa_msrvtt.py +27 -0
- configs/ret_anet.py +27 -0
- configs/ret_coco.py +37 -0
- configs/ret_didemo.py +36 -0
- configs/ret_flickr.py +37 -0
- configs/ret_msrvtt.py +31 -0
- configs/ret_msrvtt_9k.py +7 -0
- configs/ret_msrvtt_mc.py +30 -0
- configs/ret_ssv2_label.py +24 -0
- configs/ret_ssv2_template.py +24 -0
- configs/tvqa.py +36 -0
- demo.py +1 -1
- model-00001-of-00013.safetensors +2 -2
- model-00002-of-00013.safetensors +2 -2
- model-00003-of-00013.safetensors +2 -2
- model-00004-of-00013.safetensors +2 -2
- model-00005-of-00013.safetensors +2 -2
- model-00006-of-00013.safetensors +2 -2
- model-00007-of-00013.safetensors +2 -2
- model-00008-of-00013.safetensors +2 -2
- model-00009-of-00013.safetensors +2 -2
- model-00010-of-00013.safetensors +2 -2
- model-00011-of-00013.safetensors +2 -2
- model-00012-of-00013.safetensors +2 -2
- model-00013-of-00013.safetensors +1 -1
- modeling_internvideo2.py +3 -3
README.md
CHANGED
@@ -21,21 +21,20 @@ from transformers import AutoModel
|
|
21 |
from modeling_internvideo2 import (retrieve_text, vid2tensor, _frame_from_video,)
|
22 |
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
feat = model.get_vid_feat(vidtensor)
|
41 |
```
|
|
|
21 |
from modeling_internvideo2 import (retrieve_text, vid2tensor, _frame_from_video,)
|
22 |
|
23 |
|
24 |
+
model = AutoModel.from_pretrained("OpenGVLab/InternVideo2-Stage2_6B", trust_remote_code=True).eval()
|
25 |
+
|
26 |
+
video = cv2.VideoCapture('example1.mp4')
|
27 |
+
frames = [x for x in _frame_from_video(video)]
|
28 |
+
text_candidates = ["A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon.",
|
29 |
+
"A man in a gray coat walks through the snowy landscape, pulling a sleigh loaded with toys.",
|
30 |
+
"A person dressed in a blue jacket shovels the snow-covered pavement outside their house.",
|
31 |
+
"A cat excitedly runs through the yard, chasing a rabbit.",
|
32 |
+
"A person bundled up in a blanket walks through the snowy landscape, enjoying the serene winter scenery."]
|
33 |
+
|
34 |
+
texts, probs = retrieve_text(frames, text_candidates, model=model, topk=5)
|
35 |
+
for t, p in zip(texts, probs):
|
36 |
+
print(f'text: {t} ~ prob: {p:.4f}')
|
37 |
+
|
38 |
+
vidtensor = vid2tensor('example1.mp4', fnum=4)
|
39 |
+
feat = model.get_vid_feat(vidtensor)
|
|
|
40 |
```
|
__pycache__/modeling_internvideo2.cpython-310.pyc
ADDED
Binary file (95.7 kB). View file
|
|
configs/beit-base-patch16-224-pt22k-ft22k.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"note": "this file is a copy of the BEiT model config, not used directly",
|
3 |
+
"architectures": [
|
4 |
+
"BeitForImageClassification"
|
5 |
+
],
|
6 |
+
"url": "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k/raw/main/config.json",
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"drop_path_rate": 0.1,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.0,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"image_size": 224,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"layer_scale_init_value": 0.1,
|
17 |
+
"model_type": "beit",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_channels": 3,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"patch_size": 16,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.11.0.dev0",
|
24 |
+
"use_absolute_position_embeddings": false,
|
25 |
+
"use_mask_token": false,
|
26 |
+
"use_mean_pooling": true,
|
27 |
+
"use_relative_position_bias": true,
|
28 |
+
"use_shared_relative_position_bias": false,
|
29 |
+
"vocab_size": 8192
|
30 |
+
}
|
configs/config_bert_large.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"gradient_checkpointing": false,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 4096,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 24,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"type_vocab_size": 2,
|
20 |
+
"use_cache": true,
|
21 |
+
"vocab_size": 30522,
|
22 |
+
"fusion_layer": 19,
|
23 |
+
"encoder_width": 768,
|
24 |
+
"cross_module": "ca"
|
25 |
+
}
|
configs/med_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"add_type_embeddings": false,
|
18 |
+
"vocab_size": 30522,
|
19 |
+
"encoder_width": 768,
|
20 |
+
"add_cross_attention": true,
|
21 |
+
"cross_freq": 0
|
22 |
+
}
|
configs/med_large_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"add_type_embeddings": false,
|
18 |
+
"vocab_size": 30522,
|
19 |
+
"encoder_width": 1024,
|
20 |
+
"add_cross_attention": true,
|
21 |
+
"cross_freq": 0
|
22 |
+
}
|
configs/model.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_paths = dict(
|
2 |
+
BEATs_PATH="/mnt/petrelfs/lixinhao/lxh_exp/pretrained_models/beats/BEATs_iter3+.pt",
|
3 |
+
UMT_S1_B_PATH="/mnt/lustre/share/videointern/annotations/pretained_model/clipmae_vit_b16_k710_e200.pth",
|
4 |
+
UMT_S1_L_PATH="/mnt/lustre/share/videointern/annotations/pretained_model/clipmae_vit_l16_k710_e200.pth",
|
5 |
+
UMT_S1_g_PATH='/mnt/petrelfs/share_data/likunchang/model/um_teacher/umt2/vit_g14_1.1M_CLIP+MAE_300e_pt_k710_ft.pth',
|
6 |
+
InternVL_6B_PATH = "/mnt/petrelfs/share_data/wangwenhai/internvl/6b_vit_exp126_clip_alpaca_7b_laion5b_peak_1e-5_256gpu_all_trainable_degradation.sh/1499/mp_rank_00_model_states.pt"
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
VisionEncoders = dict()
|
11 |
+
VisionEncoders["beit"] = dict(
|
12 |
+
name="beit_base",
|
13 |
+
pretrained="microsoft/beit-base-patch16-224-pt22k-ft22k",
|
14 |
+
d_model=768,
|
15 |
+
)
|
16 |
+
VisionEncoders["beit_large"] = dict(
|
17 |
+
name="beit_large",
|
18 |
+
pretrained="microsoft/beit-large-patch16-224-pt22k-ft22k",
|
19 |
+
d_model=1024,
|
20 |
+
)
|
21 |
+
|
22 |
+
TextEncoders = dict()
|
23 |
+
TextEncoders["bert"] = dict(
|
24 |
+
name="bert_base",
|
25 |
+
pretrained="bert-base-uncased",
|
26 |
+
config="configs/config_bert.json",
|
27 |
+
d_model=768,
|
28 |
+
fusion_layer=9,
|
29 |
+
)
|
30 |
+
TextEncoders["bert_fusion6"] = dict(
|
31 |
+
name="bert_base_fusion6",
|
32 |
+
pretrained="bert-base-uncased",
|
33 |
+
config="configs/config_bert_fusion6.json",
|
34 |
+
d_model=768,
|
35 |
+
fusion_layer=6,
|
36 |
+
)
|
37 |
+
TextEncoders["bert_large"] = dict(
|
38 |
+
name="bert_large",
|
39 |
+
pretrained="bert-large-uncased",
|
40 |
+
config="configs/config_bert_large.json",
|
41 |
+
d_model=1024,
|
42 |
+
fusion_layer=19,
|
43 |
+
)
|
44 |
+
TextEncoders["med_bert"] = dict(
|
45 |
+
name="med_bert_base",
|
46 |
+
pretrained="bert-base-uncased",
|
47 |
+
config="configs/med_config.json",
|
48 |
+
d_model=768,
|
49 |
+
)
|
50 |
+
TextEncoders["med_bert_freq2"] = dict(
|
51 |
+
name="med_bert_base_freq2",
|
52 |
+
pretrained="bert-base-uncased",
|
53 |
+
config="configs/med_config_freq2.json",
|
54 |
+
d_model=768,
|
55 |
+
)
|
56 |
+
TextEncoders["med_bert_freq2_must"] = dict(
|
57 |
+
name="med_bert_base_freq2_must",
|
58 |
+
pretrained="bert-base-uncased",
|
59 |
+
config="configs/med_config_freq2_must.json",
|
60 |
+
d_model=768,
|
61 |
+
)
|
62 |
+
|
63 |
+
TextEncoders["med_bert_fusion10"] = dict(
|
64 |
+
name="med_bert_base_fusion",
|
65 |
+
pretrained="bert-base-uncased",
|
66 |
+
config="configs/med_config_fusion.json",
|
67 |
+
d_model=768,
|
68 |
+
fusion_layer=10
|
69 |
+
)
|
70 |
+
TextEncoders["med_bert_fusion9"] = dict(
|
71 |
+
name="med_bert_base_fusion",
|
72 |
+
pretrained="bert-base-uncased",
|
73 |
+
config="configs/med_config_fusion.json",
|
74 |
+
d_model=768,
|
75 |
+
fusion_layer=9
|
76 |
+
)
|
77 |
+
TextEncoders["med_bert_fusion6"] = dict(
|
78 |
+
name="med_bert_base_fusion",
|
79 |
+
pretrained="bert-base-uncased",
|
80 |
+
config="configs/med_config_fusion.json",
|
81 |
+
d_model=768,
|
82 |
+
fusion_layer=6
|
83 |
+
)
|
84 |
+
TextEncoders["med_bert_fusion0"] = dict(
|
85 |
+
name="med_bert_base_fusion",
|
86 |
+
pretrained="bert-base-uncased",
|
87 |
+
config="configs/med_config_fusion.json",
|
88 |
+
d_model=768,
|
89 |
+
fusion_layer=0
|
90 |
+
)
|
91 |
+
TextEncoders["med_bert_fusion3"] = dict(
|
92 |
+
name="med_bert_base_fusion",
|
93 |
+
pretrained="bert-base-uncased",
|
94 |
+
config="configs/med_config_fusion.json",
|
95 |
+
d_model=768,
|
96 |
+
fusion_layer=3
|
97 |
+
)
|
98 |
+
TextEncoders["med_bert_large"] = dict(
|
99 |
+
name="med_bert_large",
|
100 |
+
pretrained="bert-base-uncased", # not a bug, it just follows BLIP.
|
101 |
+
config="configs/med_large_config.json",
|
102 |
+
d_model=768
|
103 |
+
)
|
configs/pretrain.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .data import *
|
2 |
+
from .model import *
|
3 |
+
|
4 |
+
# ========================= data ==========================
|
5 |
+
train_corpus = "webvid_cc3m"
|
6 |
+
train_file = "${available_corpus[${train_corpus}]}" # for lazy evaluation
|
7 |
+
test_file = dict(msrvtt_1k_test=available_corpus["msrvtt_1k_test"])
|
8 |
+
test_types = ["msrvtt_1k_test"]
|
9 |
+
num_workers = 6
|
10 |
+
|
11 |
+
stop_key = None
|
12 |
+
|
13 |
+
# ========================= input ==========================
|
14 |
+
num_frames = 4
|
15 |
+
num_frames_test = 4
|
16 |
+
batch_size = 64
|
17 |
+
max_txt_l = 32
|
18 |
+
|
19 |
+
inputs = dict(
|
20 |
+
image_res=224,
|
21 |
+
video_input=dict(
|
22 |
+
num_frames="${num_frames}",
|
23 |
+
sample_type="rand",
|
24 |
+
num_frames_test="${num_frames_test}",
|
25 |
+
sample_type_test="middle",
|
26 |
+
random_aug=False,
|
27 |
+
),
|
28 |
+
max_txt_l=dict(image="${max_txt_l}", video="${max_txt_l}"),
|
29 |
+
batch_size=dict(image="${batch_size}", video="${batch_size}"),
|
30 |
+
batch_size_test=dict(image="${batch_size}", video="${batch_size}"),
|
31 |
+
)
|
32 |
+
|
33 |
+
# ========================= model ==========================
|
34 |
+
vision_enc = "beit"
|
35 |
+
text_enc = "bert"
|
36 |
+
model = dict(
|
37 |
+
vision_encoder="${VisionEncoders[${vision_enc}]}",
|
38 |
+
text_encoder="${TextEncoders[${text_enc}]}",
|
39 |
+
temporal_modeling=dict(
|
40 |
+
num_frames="${num_frames}",
|
41 |
+
temporal_model_block="timesformer",
|
42 |
+
temporal_model_position="last",
|
43 |
+
temporal_model_config=dict(input_dim="${model.vision_encoder.d_model}"),
|
44 |
+
use_temporal_position_embedding=True,
|
45 |
+
),
|
46 |
+
vit_add_ln=True,
|
47 |
+
multimodal=dict(enable=True),
|
48 |
+
embed_dim=256,
|
49 |
+
temp=0.07,
|
50 |
+
)
|
51 |
+
|
52 |
+
criterion = dict(
|
53 |
+
loss_weight=dict(vtc=1.0, mlm=1.0, vtm=1.0, mvm=0.0), # 0: disabled.
|
54 |
+
vtm_hard_neg=True,
|
55 |
+
mlm_masking_prob=0.5,
|
56 |
+
)
|
57 |
+
|
58 |
+
optimizer = dict(
|
59 |
+
opt="adamW",
|
60 |
+
lr=1e-4,
|
61 |
+
opt_betas=[0.9, 0.999], # default
|
62 |
+
weight_decay=0.02,
|
63 |
+
max_grad_norm=-1, # requires a positive float, use -1 to disable
|
64 |
+
# use a different lr for some modules, e.g., larger lr for new modules
|
65 |
+
different_lr=dict(enable=False, module_names=[], lr=1e-3),
|
66 |
+
)
|
67 |
+
|
68 |
+
scheduler = dict(sched="cosine", epochs=10, min_lr_multi=0.01, warmup_epochs=1)
|
69 |
+
|
70 |
+
evaluate = False
|
71 |
+
deep_fusion = False
|
72 |
+
evaluation = dict(
|
73 |
+
eval_frame_ensemble="concat", # [concat, max, mean, lse]
|
74 |
+
eval_x_only=False,
|
75 |
+
k_test=128,
|
76 |
+
eval_offload=True, # offload gpu tensors to cpu to save memory.
|
77 |
+
)
|
78 |
+
|
79 |
+
fp16 = True
|
80 |
+
gradient_checkpointing = True
|
81 |
+
|
82 |
+
# ========================= wandb ==========================
|
83 |
+
wandb = dict(
|
84 |
+
enable=True,
|
85 |
+
entity="likunchang", # username or team name to store the runs, see https://docs.wandb.ai/ref/python/init
|
86 |
+
project="vindlu", # setup in your command line
|
87 |
+
)
|
88 |
+
dist_url = "env://"
|
89 |
+
device = "cuda"
|
90 |
+
mode = "pt"
|
91 |
+
|
92 |
+
# ========================= others ==========================
|
93 |
+
output_dir = None # output dir
|
94 |
+
resume = False # if True, load optimizer and scheduler states as well
|
95 |
+
debug = False
|
96 |
+
log_freq = 100
|
97 |
+
seed = 42
|
98 |
+
|
99 |
+
save_latest = True
|
100 |
+
auto_resume = True
|
101 |
+
pretrained_path = "" # path to pretrained model weights, for resume only?
|
configs/qa.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
6 |
+
scheduler["warmup_epochs"] = 0.5
|
7 |
+
|
8 |
+
max_txt_l = 32
|
9 |
+
batch_size = 32
|
10 |
+
num_frames = 12
|
11 |
+
|
12 |
+
optimizer["lr"] = 1e-5
|
13 |
+
log_freq = 100
|
14 |
+
|
15 |
+
# =========additional args for VQA ============
|
16 |
+
eos = "[SEP]"
|
17 |
+
max_q_len = 25
|
18 |
+
max_a_len = 5
|
19 |
+
# =========end ================================
|
20 |
+
|
configs/qa_anet.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .qa import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
[
|
5 |
+
f"{anno_root_downstream}/anet_qa_train.json",
|
6 |
+
f"{data_root}/activity_net_2fps_360",
|
7 |
+
"video",
|
8 |
+
]
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/anet_qa_val.json",
|
13 |
+
f"{data_root}/activity_net_2fps_360",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/anet_qa_test.json",
|
18 |
+
f"{data_root}/activity_net_2fps_360",
|
19 |
+
"video",
|
20 |
+
]
|
21 |
+
)
|
22 |
+
dataset_name = "anet"
|
23 |
+
|
24 |
+
answer_list = f"{anno_root_downstream}/anet_qa_answer_list.json" # list of answer words
|
25 |
+
|
26 |
+
test_types = ["val"]
|
27 |
+
stop_key = "val" # used to choose the best ckpt. If None, save the last.
|
configs/qa_msrvtt.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .qa import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
[
|
5 |
+
f"{anno_root_downstream}/msrvtt_qa_train.json",
|
6 |
+
f"{data_root}/msrvtt_2fps_224",
|
7 |
+
"video",
|
8 |
+
]
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/msrvtt_qa_val.json",
|
13 |
+
f"{data_root}/msrvtt_2fps_224",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/msrvtt_qa_test.json",
|
18 |
+
f"{data_root}/msrvtt_2fps_224",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
dataset_name = "msrvtt"
|
23 |
+
|
24 |
+
answer_list = f"{anno_root_downstream}/msrvtt_qa_answer_list.json" # list of answer words
|
25 |
+
|
26 |
+
test_types = ["val"]
|
27 |
+
stop_key = "val" # used to choose the best ckpt. If None, save the last.
|
configs/ret_anet.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/anet_ret_train.json",
|
7 |
+
f"{data_root}/activity_net_2fps_360",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
test=[
|
12 |
+
f"{anno_root_downstream}/anet_ret_val_1.json",
|
13 |
+
f"{data_root}/activity_net_2fps_360",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
test_types = ["test"]
|
19 |
+
stop_key = "test/" # used to choose the best ckpt. If None, save the last.
|
20 |
+
is_paragraph_retrieval = True
|
21 |
+
|
22 |
+
max_txt_l = 64
|
23 |
+
batch_size = 32
|
24 |
+
num_frames = 12
|
25 |
+
|
26 |
+
optimizer["lr"] = 1e-5
|
27 |
+
log_freq = 100
|
configs/ret_coco.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/coco_train.json",
|
7 |
+
f"{data_root}/coco",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/coco_val.json",
|
13 |
+
f"{data_root}/coco",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/coco_test.json",
|
18 |
+
f"{data_root}/coco",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val/" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = False
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
scheduler["warmup_epochs"] = 0
|
29 |
+
optimizer["lr"] = 1e-5
|
30 |
+
|
31 |
+
|
32 |
+
max_txt_l = 22
|
33 |
+
batch_size = 128
|
34 |
+
num_frames = 1
|
35 |
+
num_frames_test = 1
|
36 |
+
|
37 |
+
log_freq = 100
|
configs/ret_didemo.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/didemo_ret_train.json",
|
7 |
+
f"{data_root}/didemo_2fps_360_trimed30",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/didemo_ret_val.json",
|
13 |
+
f"{data_root}/didemo_2fps_360_trimed30",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/didemo_ret_test.json",
|
18 |
+
f"{data_root}/didemo_2fps_360_trimed30",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val/" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = True
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
scheduler["warmup_epochs"] = 0
|
29 |
+
optimizer["lr"] = 1e-5
|
30 |
+
|
31 |
+
|
32 |
+
max_txt_l = 64
|
33 |
+
batch_size = 32
|
34 |
+
num_frames = 12
|
35 |
+
|
36 |
+
log_freq = 10
|
configs/ret_flickr.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/flickr30k_train.json",
|
7 |
+
f"{data_root}/f30k",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/flickr30k_val.json",
|
13 |
+
f"{data_root}/f30k",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/flickr30k_test.json",
|
18 |
+
f"{data_root}/f30k",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val/" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = False
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
scheduler["warmup_epochs"] = 0
|
29 |
+
optimizer["lr"] = 1e-5
|
30 |
+
|
31 |
+
|
32 |
+
max_txt_l = 32
|
33 |
+
batch_size = 128
|
34 |
+
num_frames = 1
|
35 |
+
num_frames_test = 1
|
36 |
+
|
37 |
+
log_freq = 100
|
configs/ret_msrvtt.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/msrvtt_ret_train7k.json",
|
7 |
+
f"{data_root}/msrvtt_2fps_224",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
test=[
|
12 |
+
f"{anno_root_downstream}/msrvtt_ret_test1k.json",
|
13 |
+
f"{data_root}/msrvtt_2fps_224",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
test_types = ["test"]
|
19 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
20 |
+
is_paragraph_retrieval = False
|
21 |
+
|
22 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
23 |
+
scheduler["warmup_epochs"] = 0
|
24 |
+
scheduler["epochs"] = 5
|
25 |
+
optimizer["lr"] = 1e-5
|
26 |
+
|
27 |
+
max_txt_l = 32
|
28 |
+
batch_size = 32
|
29 |
+
num_frames = 12
|
30 |
+
|
31 |
+
log_freq = 100
|
configs/ret_msrvtt_9k.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ret_msrvtt import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
f"{anno_root_downstream}/msrvtt_ret_train9k.json",
|
5 |
+
f"{data_root}/msrvtt_2fps_224",
|
6 |
+
"video",
|
7 |
+
]
|
configs/ret_msrvtt_mc.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/msrvtt_ret_train7k.json",
|
7 |
+
f"{data_root}/msrvtt_2fps_224",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
mc_test=[
|
12 |
+
f"{anno_root_downstream}/msrvtt_mc_test.json",
|
13 |
+
f"{data_root}/msrvtt_2fps_224",
|
14 |
+
"video",
|
15 |
+
]
|
16 |
+
)
|
17 |
+
|
18 |
+
test_types = ["mc_test"]
|
19 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
20 |
+
is_paragraph_retrieval = False
|
21 |
+
|
22 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
23 |
+
scheduler["warmup_epochs"] = 0
|
24 |
+
optimizer["lr"] = 1e-5
|
25 |
+
|
26 |
+
max_txt_l = 32
|
27 |
+
batch_size = 32
|
28 |
+
num_frames = 12
|
29 |
+
|
30 |
+
log_freq = 100
|
configs/ret_ssv2_label.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ret_msrvtt import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
f"{anno_root_downstream}/ssv2_ret_label_train.json",
|
5 |
+
f"{data_root}/ssv2",
|
6 |
+
"video",
|
7 |
+
]
|
8 |
+
test_file = dict(
|
9 |
+
val=[
|
10 |
+
f"{anno_root_downstream}/ssv2_ret_label_val_small.json",
|
11 |
+
f"{data_root}/ssv2",
|
12 |
+
"video",
|
13 |
+
],
|
14 |
+
)
|
15 |
+
|
16 |
+
test_types = ["val"]
|
17 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
18 |
+
|
19 |
+
has_multi_vision_gt = True
|
20 |
+
|
21 |
+
scheduler["epochs"] = 10
|
22 |
+
optimizer["lr"] = 1e-4
|
23 |
+
|
24 |
+
max_txt_l = 25
|
configs/ret_ssv2_template.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ret_msrvtt import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
f"{anno_root_downstream}/ssv2_ret_template_train.json",
|
5 |
+
f"{data_root}/ssv2",
|
6 |
+
"video",
|
7 |
+
]
|
8 |
+
test_file = dict(
|
9 |
+
val=[
|
10 |
+
f"{anno_root_downstream}/ssv2_ret_template_val_small.json",
|
11 |
+
f"{data_root}/ssv2",
|
12 |
+
"video",
|
13 |
+
],
|
14 |
+
)
|
15 |
+
|
16 |
+
test_types = ["val"]
|
17 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
18 |
+
|
19 |
+
has_multi_vision_gt = True
|
20 |
+
|
21 |
+
scheduler["epochs"] = 10
|
22 |
+
optimizer["lr"] = 1e-4
|
23 |
+
|
24 |
+
max_txt_l = 22
|
configs/tvqa.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/tvqa_train_with_answer.json",
|
7 |
+
f"{data_root}/tvqa_trimmed_3fps",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/tvqa_val_with_answer.json",
|
13 |
+
f"{data_root}/tvqa_trimmed_3fps",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/tvqa_test_public_with_answer.json",
|
18 |
+
f"{data_root}/tvqa_trimmed_3fps",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = False
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
optimizer["lr"] = 1e-5
|
29 |
+
scheduler["warmup_epochs"] = 0.5
|
30 |
+
scheduler["epochs"] = 10
|
31 |
+
|
32 |
+
max_txt_l = 150
|
33 |
+
batch_size = 32
|
34 |
+
num_frames = 12
|
35 |
+
|
36 |
+
log_freq = 100
|
demo.py
CHANGED
@@ -4,7 +4,7 @@ from modeling_internvideo2 import (retrieve_text, vid2tensor, _frame_from_video,
|
|
4 |
|
5 |
|
6 |
if __name__ == '__main__':
|
7 |
-
model = AutoModel.from_pretrained("
|
8 |
|
9 |
video = cv2.VideoCapture('example1.mp4')
|
10 |
frames = [x for x in _frame_from_video(video)]
|
|
|
4 |
|
5 |
|
6 |
if __name__ == '__main__':
|
7 |
+
model = AutoModel.from_pretrained("/mnt/petrelfs/lixinhao/lxh_exp/LongVideo/InternVideo2-Stage2_6B", trust_remote_code=True).eval()
|
8 |
|
9 |
video = cv2.VideoCapture('example1.mp4')
|
10 |
frames = [x for x in _frame_from_video(video)]
|
model-00001-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d177c77c6721ab4952bfeb8d4a71c5aa6869a9e589ecee95b1dd5341b02a240
|
3 |
+
size 1843206232
|
model-00002-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98753c824d626ee1ae9897069e9712b023b59ed2186108305229bb1d1b742239
|
3 |
+
size 1966700208
|
model-00003-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc1ad59447161718504b0e94ed9d84a0d7bd7da988cb6b06f6664edeb1715639
|
3 |
+
size 1966700224
|
model-00004-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd4479e81e917ea371b1fe9a2a22165e4f22fbad535586c2db202566d23f5f78
|
3 |
+
size 1966700264
|
model-00005-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f16ff3ed45cc235f5c85954ec72efdb3d0a9cc150ed1bd82dff3f32fdb2c5eae
|
3 |
+
size 1966700264
|
model-00006-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b4fadad100d85dc055008b3d5f4c9dd78aac49446643ce919431b72ace26923
|
3 |
+
size 1966700264
|
model-00007-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d32dbcb9d7cf502af70cd06b5a56655e05265cc5f5eef278fdcd7fd4d35caa3
|
3 |
+
size 1966700264
|
model-00008-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f990c3a412c64234de157f4fb656cfadad31b33ba76b1574b477e73469a38f4
|
3 |
+
size 1966700264
|
model-00009-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29811441d6a41d3e57738e4f68537b06bd6ce7732cd593b520e1ae17da65272
|
3 |
+
size 1966700264
|
model-00010-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57e01270ed6a8adac71188c2bce2e1499dbabe06206cb808a7c296478121353b
|
3 |
+
size 1966700264
|
model-00011-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d4ef0dede046efe4304077af7b0ce03eab9bc0b8e0345eef8fd34a447717777
|
3 |
+
size 1966700264
|
model-00012-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29a0162c3608fae39d2fb5ac73fc01d09d87a4d9ae22062bf9997c0a5e92b4b1
|
3 |
+
size 1966700264
|
model-00013-of-00013.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1989231912
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6328c13ba3af85b8d0d5d9aad104041dc3934e6b1e42a4cc89dc95da6a04f42e
|
3 |
size 1989231912
|
modeling_internvideo2.py
CHANGED
@@ -532,17 +532,17 @@ class LayerScale(nn.Module):
|
|
532 |
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
|
533 |
super().__init__()
|
534 |
self.inplace = inplace
|
535 |
-
self.
|
536 |
self.force_fp32 = force_fp32
|
537 |
|
538 |
@torch.cuda.amp.autocast(enabled=False)
|
539 |
def forward(self, x):
|
540 |
if self.force_fp32:
|
541 |
output_type = x.dtype
|
542 |
-
out = x.float().mul_(self.
|
543 |
return out.to(dtype=output_type)
|
544 |
else:
|
545 |
-
out = x.mul_(self.
|
546 |
return out
|
547 |
|
548 |
|
|
|
532 |
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
|
533 |
super().__init__()
|
534 |
self.inplace = inplace
|
535 |
+
self.weight = nn.Parameter(init_values * torch.ones(dim))
|
536 |
self.force_fp32 = force_fp32
|
537 |
|
538 |
@torch.cuda.amp.autocast(enabled=False)
|
539 |
def forward(self, x):
|
540 |
if self.force_fp32:
|
541 |
output_type = x.dtype
|
542 |
+
out = x.float().mul_(self.weight.float()) if self.inplace else x.float() * self.weight.float()
|
543 |
return out.to(dtype=output_type)
|
544 |
else:
|
545 |
+
out = x.mul_(self.weight) if self.inplace else x * self.weight
|
546 |
return out
|
547 |
|
548 |
|