Omartificial-Intelligence-Space nielsr HF staff commited on
Commit
f222fc5
·
verified ·
1 Parent(s): a764c00

Add feature-extraction pipeline tag, project page link and paper link (#1)

Browse files

- Add feature-extraction pipeline tag, project page link and paper link (4791aff23a39a1a4369c67d2db3f58e72e280d0e)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +22 -22
README.md CHANGED
@@ -1,11 +1,19 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - sentence-transformers
4
  - loss:MatryoshkaLoss
5
  - loss:MultipleNegativesRankingLoss
6
  - EuroBert
7
  - Arabic
8
- base_model: EuroBERT/EuroBERT-210m
9
  widget:
10
  - source_sentence: امرأة شقراء تطل على مشهد (سياتل سبيس نيدل)
11
  sentences:
@@ -21,7 +29,7 @@ widget:
21
  sentences:
22
  - هناك العديد من الناس الحاضرين.
23
  - الكلب الأبيض على الشاطئ
24
- - هناك شخص واحد فقط موجود.
25
  - source_sentence: مجموعة من الناس تمشي بجانب شاحنة.
26
  sentences:
27
  - الناس يقفون
@@ -32,11 +40,6 @@ widget:
32
  - شخصان يلعبان كرة البيسبول
33
  - الرجل ينظف
34
  - لاعبين لكرة البيسبول يجلسان على مقعد
35
- pipeline_tag: sentence-similarity
36
- library_name: sentence-transformers
37
- metrics:
38
- - pearson_cosine
39
- - spearman_cosine
40
  model-index:
41
  - name: SentenceTransformer based on EuroBERT/EuroBERT-210m
42
  results:
@@ -105,12 +108,8 @@ model-index:
105
  - type: spearman_cosine
106
  value: 0.7975941111911333
107
  name: Spearman Cosine
108
- license: mit
109
- language:
110
- - ar
111
  ---
112
 
113
-
114
  # Ara-EuroBERT: Arabic-optimized Sentence Transformer
115
 
116
  <img src="https://i.ibb.co/d4svDscP/Clear-Familiar-situations-that-you-already-have-best-practices-for-4.png" width="100" align="left"/>
@@ -119,13 +118,14 @@ Ara-EuroBERT is a [sentence-transformers](https://www.SBERT.net) model fine-tune
119
 
120
  This model maps sentences and paragraphs to a **768-dimensional dense vector space** and **Maximum Sequence Length:** 8,192 tokens.
121
 
 
122
 
123
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628f7a71dd993507cfcbe587/gKbhM-U-RsAoIa8pkDQX4.png)
124
 
 
125
 
126
  Our fine-tuned model shows remarkable improvements over the base models, achieving a 73.5% relative improvement on STS17 and a 21.6% relative improvement on STS22.v2 compared to the base EuroBERT-210M.
127
 
128
-
129
  ## Model Details
130
 
131
  ### Model Description
@@ -243,11 +243,11 @@ If you use this model in your research, please cite the following works:
243
  ```bibtex
244
  @misc{boizard2025eurobertscalingmultilingualencoders,
245
  title={EuroBERT: Scaling Multilingual Encoders for European Languages},
246
- author={Nicolas Boizard and Hippolyte Gisserot-Boukhlef and Duarte M. Alves and André Martins and Ayoub Hammal and Caio Corro and Céline Hudelot and Emmanuel Malherbe and Etienne Malaboeuf and Fanny Jourdan and Gabriel Hautreux and João Alves and Kevin El-Haddad and Manuel Faysse and Maxime Peyrard and Nuno M. Guerreiro and Patrick Fernandes and Ricardo Rei and Pierre Colombo},
247
- year={2025},
248
- eprint={2503.05500},
249
- archivePrefix={arXiv},
250
- primaryClass={cs.CL},
251
  url={https://arxiv.org/abs/2503.05500},
252
  }
253
  ```
@@ -268,9 +268,9 @@ If you use this model in your research, please cite the following works:
268
  @misc{kusupati2024matryoshka,
269
  title={Matryoshka Representation Learning},
270
  author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
271
- year={2024},
272
- eprint={2205.13147},
273
- archivePrefix={arXiv},
274
- primaryClass={cs.LG}
275
  }
276
  ```
 
1
  ---
2
+ base_model: EuroBERT/EuroBERT-210m
3
+ language:
4
+ - ar
5
+ library_name: sentence-transformers
6
+ license: mit
7
+ metrics:
8
+ - pearson_cosine
9
+ - spearman_cosine
10
+ pipeline_tag: feature-extraction
11
  tags:
12
  - sentence-transformers
13
  - loss:MatryoshkaLoss
14
  - loss:MultipleNegativesRankingLoss
15
  - EuroBert
16
  - Arabic
 
17
  widget:
18
  - source_sentence: امرأة شقراء تطل على مشهد (سياتل سبيس نيدل)
19
  sentences:
 
29
  sentences:
30
  - هناك العديد من الناس الحاضرين.
31
  - الكلب الأبيض على الشاطئ
32
+ - هناك شخص واحد فقط موجود.\
33
  - source_sentence: مجموعة من الناس تمشي بجانب شاحنة.
34
  sentences:
35
  - الناس يقفون
 
40
  - شخصان يلعبان كرة البيسبول
41
  - الرجل ينظف
42
  - لاعبين لكرة البيسبول يجلسان على مقعد
 
 
 
 
 
43
  model-index:
44
  - name: SentenceTransformer based on EuroBERT/EuroBERT-210m
45
  results:
 
108
  - type: spearman_cosine
109
  value: 0.7975941111911333
110
  name: Spearman Cosine
 
 
 
111
  ---
112
 
 
113
  # Ara-EuroBERT: Arabic-optimized Sentence Transformer
114
 
115
  <img src="https://i.ibb.co/d4svDscP/Clear-Familiar-situations-that-you-already-have-best-practices-for-4.png" width="100" align="left"/>
 
118
 
119
  This model maps sentences and paragraphs to a **768-dimensional dense vector space** and **Maximum Sequence Length:** 8,192 tokens.
120
 
121
+ Paper: [](https://huggingface.co/papers/2503.05500)
122
 
123
+ You can find more information on the base model at https://huggingface.co/EuroBERT
124
 
125
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628f7a71dd993507cfcbe587/gKbhM-U-RsAoIa8pkDQX4.png)
126
 
127
  Our fine-tuned model shows remarkable improvements over the base models, achieving a 73.5% relative improvement on STS17 and a 21.6% relative improvement on STS22.v2 compared to the base EuroBERT-210M.
128
 
 
129
  ## Model Details
130
 
131
  ### Model Description
 
243
  ```bibtex
244
  @misc{boizard2025eurobertscalingmultilingualencoders,
245
  title={EuroBERT: Scaling Multilingual Encoders for European Languages},
246
+ author={Nicolas Boizard and Hippolyte Gisserot-Boukhlef and Duarte M. Alves and André Martins and Ayoub Hammal and Caio Corro and Céline Hudelot and Emmanuel Malherbe and Etienne Malaboeuf and Fanny Jourdan and Gabriel Hautreux and João Alves and Kevin El-Haddad and Manuel Faysse and Maxime Peyrard and Nuno M. Guerreiro and Patrick Fernandes and Ricardo Rei and Pierre Colombo},\
247
+ year={2025},\
248
+ eprint={2503.05500},\
249
+ archivePrefix={arXiv},\
250
+ primaryClass={cs.CL},\
251
  url={https://arxiv.org/abs/2503.05500},
252
  }
253
  ```
 
268
  @misc{kusupati2024matryoshka,
269
  title={Matryoshka Representation Learning},
270
  author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
271
+ year={2024},\
272
+ eprint={2205.13147},\
273
+ archivePrefix={arXiv},\
274
+ primaryClass={cs.LG}\
275
  }
276
  ```