--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: ModernBERT-base-zeroshot-v2.0-2024-12-28-09-01 results: [] --- # ModernBERT-base-zeroshot-v2.0-2024-12-28-09-01 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1856 - F1 Macro: 0.6373 - F1 Micro: 0.7076 - Accuracy Balanced: 0.6761 - Accuracy: 0.7076 - Precision Macro: 0.6700 - Recall Macro: 0.6761 - Precision Micro: 0.7076 - Recall Micro: 0.7076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2321 | 1.0 | 33915 | 0.3726 | 0.8316 | 0.8458 | 0.8332 | 0.8458 | 0.8301 | 0.8332 | 0.8458 | 0.8458 | | 0.1305 | 2.0 | 67830 | 0.4350 | 0.8396 | 0.8541 | 0.8389 | 0.8541 | 0.8403 | 0.8389 | 0.8541 | 0.8541 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0