Mdean77 commited on
Commit
64d99dc
·
verified ·
1 Parent(s): 6ec03f5

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:400
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: What types of objectives are mentioned as not being specific to
13
+ AI systems in the context?
14
+ sentences:
15
+ - The notion of ‘biometric identification’ referred to in this Regulation should
16
+ be defined as the automated recognition of physical, physiological and behavioural
17
+ human features such as the face, eye movement, body shape, voice, prosody, gait,
18
+ posture, heart rate, blood pressure, odour, keystrokes characteristics, for the
19
+ purpose of establishing an individual’s identity by comparing biometric data of
20
+ that individual to stored biometric data of individuals in a reference database,
21
+ irrespective of whether the individual has given its consent or not. This excludes
22
+ AI systems intended to be used for biometric verification, which includes authentication,
23
+ whose sole purpose is to confirm that a specific natural person is the person
24
+ he or she
25
+ - are not specific to AI systems and pursue other legitimate public interest objectives,
26
+ should not be affected by this Regulation.
27
+ - for supervision of the law enforcement and judicial authorities under this Regulation
28
+ should assess whether those frameworks for cooperation or international agreements
29
+ include adequate safeguards with respect to the protection of fundamental rights
30
+ and freedoms of individuals. Recipient national authorities and Union institutions,
31
+ bodies, offices and agencies making use of such outputs in the Union remain accountable
32
+ to ensure their use complies with Union law. When those international agreements
33
+ are revised or new ones are concluded in the future, the contracting parties should
34
+ make utmost efforts to align those agreements with the requirements of this Regulation.
35
+ - source_sentence: How does the context relate to the concept of 49?
36
+ sentences:
37
+ - (49)
38
+ - (56)
39
+ - (25)
40
+ - source_sentence: How does a serious disruption of critical infrastructure relate
41
+ to the threat to life or physical safety of individuals?
42
+ sentences:
43
+ - or otherwise, for example, public roads and squares, parks, forests, playgrounds.
44
+ A space should also be classified as being publicly accessible if, regardless
45
+ of potential capacity or security restrictions, access is subject to certain predetermined
46
+ conditions which can be fulfilled by an undetermined number of persons, such as
47
+ the purchase of a ticket or title of transport, prior registration or having a certain
48
+ age. In contrast, a space should not be considered to be publicly accessible if
49
+ access is limited to specific and defined natural persons through either Union
50
+ or national law directly related to public safety or security or through the clear
51
+ manifestation of will by the person having the relevant authority over the space.
52
+ The
53
+ - to highly varying degrees for the practical pursuit of the localisation or identification
54
+ of a perpetrator or suspect of the different criminal offences listed and having
55
+ regard to the likely differences in the seriousness, probability and scale of
56
+ the harm or possible negative consequences. An imminent threat to life or the
57
+ physical safety of natural persons could also result from a serious disruption
58
+ of critical infrastructure, as defined in Article 2, point (4) of Directive (EU)
59
+ 2022/2557 of the European Parliament and of the Council (19), where the disruption
60
+ or destruction of such critical infrastructure would result in an imminent threat
61
+ to life or the physical safety of a person, including through serious harm to
62
+ the provision of
63
+ - As regards high-risk AI systems that are safety components of products or systems,
64
+ or which are themselves products or systems falling within the scope of Regulation
65
+ (EC) No 300/2008 of the European Parliament and of the Council (24), Regulation
66
+ (EU) No 167/2013 of the European Parliament and of the Council (25), Regulation
67
+ (EU) No 168/2013 of the European Parliament and of the Council (26), Directive
68
+ 2014/90/EU of the European Parliament and of the Council (27), Directive (EU)
69
+ 2016/797 of the European Parliament and of the Council (28), Regulation (EU) 2018/858
70
+ of the European Parliament and of the Council (29), Regulation (EU) 2018/1139
71
+ of the European Parliament and of the Council (30), and Regulation (EU) 2019/2144
72
+ of the European
73
+ - source_sentence: What specific rights of children are highlighted in Article 24
74
+ of the Charter and the United Nations Convention on the Rights of the Child?
75
+ sentences:
76
+ - it is important to highlight the fact that children have specific rights as enshrined
77
+ in Article 24 of the Charter and in the United Nations Convention on the Rights
78
+ of the Child, further developed in the UNCRC General Comment No 25 as regards
79
+ the digital environment, both of which require consideration of the children’s
80
+ vulnerabilities and provision of such protection and care as necessary for their
81
+ well-being. The fundamental right to a high level of environmental protection
82
+ enshrined in the Charter and implemented in Union policies should also be considered
83
+ when assessing the severity of the harm that an AI system can cause, including
84
+ in relation to the health and safety of persons.
85
+ - of AI systems that are high-risk and use cases that are not.
86
+ - As regards high-risk AI systems that are safety components of products or systems,
87
+ or which are themselves products or systems falling within the scope of Regulation
88
+ (EC) No 300/2008 of the European Parliament and of the Council (24), Regulation
89
+ (EU) No 167/2013 of the European Parliament and of the Council (25), Regulation
90
+ (EU) No 168/2013 of the European Parliament and of the Council (26), Directive
91
+ 2014/90/EU of the European Parliament and of the Council (27), Directive (EU)
92
+ 2016/797 of the European Parliament and of the Council (28), Regulation (EU) 2018/858
93
+ of the European Parliament and of the Council (29), Regulation (EU) 2018/1139
94
+ of the European Parliament and of the Council (30), and Regulation (EU) 2019/2144
95
+ of the European
96
+ - source_sentence: What is the significance of the number 4 in the provided context?
97
+ sentences:
98
+ - are intended to be used solely for the purpose of enabling cybersecurity and personal
99
+ data protection measures should not be considered to be high-risk AI systems.
100
+ - (4)
101
+ - '(5)
102
+
103
+
104
+
105
+ At the same time, depending on the circumstances regarding its specific application,
106
+ use, and level of technological development, AI may generate risks and cause harm
107
+ to public interests and fundamental rights that are protected by Union law. Such
108
+ harm might be material or immaterial, including physical, psychological, societal
109
+ or economic harm.
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+ (6)'
124
+ pipeline_tag: sentence-similarity
125
+ library_name: sentence-transformers
126
+ metrics:
127
+ - cosine_accuracy@1
128
+ - cosine_accuracy@3
129
+ - cosine_accuracy@5
130
+ - cosine_accuracy@10
131
+ - cosine_precision@1
132
+ - cosine_precision@3
133
+ - cosine_precision@5
134
+ - cosine_precision@10
135
+ - cosine_recall@1
136
+ - cosine_recall@3
137
+ - cosine_recall@5
138
+ - cosine_recall@10
139
+ - cosine_ndcg@10
140
+ - cosine_mrr@10
141
+ - cosine_map@100
142
+ model-index:
143
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
144
+ results:
145
+ - task:
146
+ type: information-retrieval
147
+ name: Information Retrieval
148
+ dataset:
149
+ name: Unknown
150
+ type: unknown
151
+ metrics:
152
+ - type: cosine_accuracy@1
153
+ value: 0.9166666666666666
154
+ name: Cosine Accuracy@1
155
+ - type: cosine_accuracy@3
156
+ value: 1.0
157
+ name: Cosine Accuracy@3
158
+ - type: cosine_accuracy@5
159
+ value: 1.0
160
+ name: Cosine Accuracy@5
161
+ - type: cosine_accuracy@10
162
+ value: 1.0
163
+ name: Cosine Accuracy@10
164
+ - type: cosine_precision@1
165
+ value: 0.9166666666666666
166
+ name: Cosine Precision@1
167
+ - type: cosine_precision@3
168
+ value: 0.3333333333333333
169
+ name: Cosine Precision@3
170
+ - type: cosine_precision@5
171
+ value: 0.19999999999999998
172
+ name: Cosine Precision@5
173
+ - type: cosine_precision@10
174
+ value: 0.09999999999999999
175
+ name: Cosine Precision@10
176
+ - type: cosine_recall@1
177
+ value: 0.9166666666666666
178
+ name: Cosine Recall@1
179
+ - type: cosine_recall@3
180
+ value: 1.0
181
+ name: Cosine Recall@3
182
+ - type: cosine_recall@5
183
+ value: 1.0
184
+ name: Cosine Recall@5
185
+ - type: cosine_recall@10
186
+ value: 1.0
187
+ name: Cosine Recall@10
188
+ - type: cosine_ndcg@10
189
+ value: 0.9665164429315495
190
+ name: Cosine Ndcg@10
191
+ - type: cosine_mrr@10
192
+ value: 0.954861111111111
193
+ name: Cosine Mrr@10
194
+ - type: cosine_map@100
195
+ value: 0.9548611111111112
196
+ name: Cosine Map@100
197
+ ---
198
+
199
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
200
+
201
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
202
+
203
+ ## Model Details
204
+
205
+ ### Model Description
206
+ - **Model Type:** Sentence Transformer
207
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
208
+ - **Maximum Sequence Length:** 512 tokens
209
+ - **Output Dimensionality:** 1024 dimensions
210
+ - **Similarity Function:** Cosine Similarity
211
+ <!-- - **Training Dataset:** Unknown -->
212
+ <!-- - **Language:** Unknown -->
213
+ <!-- - **License:** Unknown -->
214
+
215
+ ### Model Sources
216
+
217
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
218
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
219
+ - **HF中国镜像站:** [Sentence Transformers on HF中国镜像站](https://huggingface.co/models?library=sentence-transformers)
220
+
221
+ ### Full Model Architecture
222
+
223
+ ```
224
+ SentenceTransformer(
225
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
226
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
227
+ (2): Normalize()
228
+ )
229
+ ```
230
+
231
+ ## Usage
232
+
233
+ ### Direct Usage (Sentence Transformers)
234
+
235
+ First install the Sentence Transformers library:
236
+
237
+ ```bash
238
+ pip install -U sentence-transformers
239
+ ```
240
+
241
+ Then you can load this model and run inference.
242
+ ```python
243
+ from sentence_transformers import SentenceTransformer
244
+
245
+ # Download from the 🤗 Hub
246
+ model = SentenceTransformer("Mdean77/legal-ft-2")
247
+ # Run inference
248
+ sentences = [
249
+ 'What is the significance of the number 4 in the provided context?',
250
+ '(4)',
251
+ 'are intended to be used solely for the purpose of enabling cybersecurity and personal data protection measures should not be considered to be high-risk AI systems.',
252
+ ]
253
+ embeddings = model.encode(sentences)
254
+ print(embeddings.shape)
255
+ # [3, 1024]
256
+
257
+ # Get the similarity scores for the embeddings
258
+ similarities = model.similarity(embeddings, embeddings)
259
+ print(similarities.shape)
260
+ # [3, 3]
261
+ ```
262
+
263
+ <!--
264
+ ### Direct Usage (Transformers)
265
+
266
+ <details><summary>Click to see the direct usage in Transformers</summary>
267
+
268
+ </details>
269
+ -->
270
+
271
+ <!--
272
+ ### Downstream Usage (Sentence Transformers)
273
+
274
+ You can finetune this model on your own dataset.
275
+
276
+ <details><summary>Click to expand</summary>
277
+
278
+ </details>
279
+ -->
280
+
281
+ <!--
282
+ ### Out-of-Scope Use
283
+
284
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
285
+ -->
286
+
287
+ ## Evaluation
288
+
289
+ ### Metrics
290
+
291
+ #### Information Retrieval
292
+
293
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
294
+
295
+ | Metric | Value |
296
+ |:--------------------|:-----------|
297
+ | cosine_accuracy@1 | 0.9167 |
298
+ | cosine_accuracy@3 | 1.0 |
299
+ | cosine_accuracy@5 | 1.0 |
300
+ | cosine_accuracy@10 | 1.0 |
301
+ | cosine_precision@1 | 0.9167 |
302
+ | cosine_precision@3 | 0.3333 |
303
+ | cosine_precision@5 | 0.2 |
304
+ | cosine_precision@10 | 0.1 |
305
+ | cosine_recall@1 | 0.9167 |
306
+ | cosine_recall@3 | 1.0 |
307
+ | cosine_recall@5 | 1.0 |
308
+ | cosine_recall@10 | 1.0 |
309
+ | **cosine_ndcg@10** | **0.9665** |
310
+ | cosine_mrr@10 | 0.9549 |
311
+ | cosine_map@100 | 0.9549 |
312
+
313
+ <!--
314
+ ## Bias, Risks and Limitations
315
+
316
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
317
+ -->
318
+
319
+ <!--
320
+ ### Recommendations
321
+
322
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
323
+ -->
324
+
325
+ ## Training Details
326
+
327
+ ### Training Dataset
328
+
329
+ #### Unnamed Dataset
330
+
331
+ * Size: 400 training samples
332
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
333
+ * Approximate statistics based on the first 400 samples:
334
+ | | sentence_0 | sentence_1 |
335
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
336
+ | type | string | string |
337
+ | details | <ul><li>min: 10 tokens</li><li>mean: 20.43 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 93.01 tokens</li><li>max: 186 tokens</li></ul> |
338
+ * Samples:
339
+ | sentence_0 | sentence_1 |
340
+ |:-----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|
341
+ | <code>What is the significance of the number 50 in the given context?</code> | <code>(50)</code> |
342
+ | <code>How does the context relate to the concept of fifty?</code> | <code>(50)</code> |
343
+ | <code>What are the ethical principles mentioned in the context for developing voluntary best practices and standards?</code> | <code>encouraged to take into account, as appropriate, the ethical principles for the development of voluntary best practices and standards.</code> |
344
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
345
+ ```json
346
+ {
347
+ "loss": "MultipleNegativesRankingLoss",
348
+ "matryoshka_dims": [
349
+ 768,
350
+ 512,
351
+ 256,
352
+ 128,
353
+ 64
354
+ ],
355
+ "matryoshka_weights": [
356
+ 1,
357
+ 1,
358
+ 1,
359
+ 1,
360
+ 1
361
+ ],
362
+ "n_dims_per_step": -1
363
+ }
364
+ ```
365
+
366
+ ### Training Hyperparameters
367
+ #### Non-Default Hyperparameters
368
+
369
+ - `eval_strategy`: steps
370
+ - `per_device_train_batch_size`: 10
371
+ - `per_device_eval_batch_size`: 10
372
+ - `num_train_epochs`: 10
373
+ - `multi_dataset_batch_sampler`: round_robin
374
+
375
+ #### All Hyperparameters
376
+ <details><summary>Click to expand</summary>
377
+
378
+ - `overwrite_output_dir`: False
379
+ - `do_predict`: False
380
+ - `eval_strategy`: steps
381
+ - `prediction_loss_only`: True
382
+ - `per_device_train_batch_size`: 10
383
+ - `per_device_eval_batch_size`: 10
384
+ - `per_gpu_train_batch_size`: None
385
+ - `per_gpu_eval_batch_size`: None
386
+ - `gradient_accumulation_steps`: 1
387
+ - `eval_accumulation_steps`: None
388
+ - `torch_empty_cache_steps`: None
389
+ - `learning_rate`: 5e-05
390
+ - `weight_decay`: 0.0
391
+ - `adam_beta1`: 0.9
392
+ - `adam_beta2`: 0.999
393
+ - `adam_epsilon`: 1e-08
394
+ - `max_grad_norm`: 1
395
+ - `num_train_epochs`: 10
396
+ - `max_steps`: -1
397
+ - `lr_scheduler_type`: linear
398
+ - `lr_scheduler_kwargs`: {}
399
+ - `warmup_ratio`: 0.0
400
+ - `warmup_steps`: 0
401
+ - `log_level`: passive
402
+ - `log_level_replica`: warning
403
+ - `log_on_each_node`: True
404
+ - `logging_nan_inf_filter`: True
405
+ - `save_safetensors`: True
406
+ - `save_on_each_node`: False
407
+ - `save_only_model`: False
408
+ - `restore_callback_states_from_checkpoint`: False
409
+ - `no_cuda`: False
410
+ - `use_cpu`: False
411
+ - `use_mps_device`: False
412
+ - `seed`: 42
413
+ - `data_seed`: None
414
+ - `jit_mode_eval`: False
415
+ - `use_ipex`: False
416
+ - `bf16`: False
417
+ - `fp16`: False
418
+ - `fp16_opt_level`: O1
419
+ - `half_precision_backend`: auto
420
+ - `bf16_full_eval`: False
421
+ - `fp16_full_eval`: False
422
+ - `tf32`: None
423
+ - `local_rank`: 0
424
+ - `ddp_backend`: None
425
+ - `tpu_num_cores`: None
426
+ - `tpu_metrics_debug`: False
427
+ - `debug`: []
428
+ - `dataloader_drop_last`: False
429
+ - `dataloader_num_workers`: 0
430
+ - `dataloader_prefetch_factor`: None
431
+ - `past_index`: -1
432
+ - `disable_tqdm`: False
433
+ - `remove_unused_columns`: True
434
+ - `label_names`: None
435
+ - `load_best_model_at_end`: False
436
+ - `ignore_data_skip`: False
437
+ - `fsdp`: []
438
+ - `fsdp_min_num_params`: 0
439
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
440
+ - `fsdp_transformer_layer_cls_to_wrap`: None
441
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
442
+ - `deepspeed`: None
443
+ - `label_smoothing_factor`: 0.0
444
+ - `optim`: adamw_torch
445
+ - `optim_args`: None
446
+ - `adafactor`: False
447
+ - `group_by_length`: False
448
+ - `length_column_name`: length
449
+ - `ddp_find_unused_parameters`: None
450
+ - `ddp_bucket_cap_mb`: None
451
+ - `ddp_broadcast_buffers`: False
452
+ - `dataloader_pin_memory`: True
453
+ - `dataloader_persistent_workers`: False
454
+ - `skip_memory_metrics`: True
455
+ - `use_legacy_prediction_loop`: False
456
+ - `push_to_hub`: False
457
+ - `resume_from_checkpoint`: None
458
+ - `hub_model_id`: None
459
+ - `hub_strategy`: every_save
460
+ - `hub_private_repo`: None
461
+ - `hub_always_push`: False
462
+ - `gradient_checkpointing`: False
463
+ - `gradient_checkpointing_kwargs`: None
464
+ - `include_inputs_for_metrics`: False
465
+ - `include_for_metrics`: []
466
+ - `eval_do_concat_batches`: True
467
+ - `fp16_backend`: auto
468
+ - `push_to_hub_model_id`: None
469
+ - `push_to_hub_organization`: None
470
+ - `mp_parameters`:
471
+ - `auto_find_batch_size`: False
472
+ - `full_determinism`: False
473
+ - `torchdynamo`: None
474
+ - `ray_scope`: last
475
+ - `ddp_timeout`: 1800
476
+ - `torch_compile`: False
477
+ - `torch_compile_backend`: None
478
+ - `torch_compile_mode`: None
479
+ - `dispatch_batches`: None
480
+ - `split_batches`: None
481
+ - `include_tokens_per_second`: False
482
+ - `include_num_input_tokens_seen`: False
483
+ - `neftune_noise_alpha`: None
484
+ - `optim_target_modules`: None
485
+ - `batch_eval_metrics`: False
486
+ - `eval_on_start`: False
487
+ - `use_liger_kernel`: False
488
+ - `eval_use_gather_object`: False
489
+ - `average_tokens_across_devices`: False
490
+ - `prompts`: None
491
+ - `batch_sampler`: batch_sampler
492
+ - `multi_dataset_batch_sampler`: round_robin
493
+
494
+ </details>
495
+
496
+ ### Training Logs
497
+ | Epoch | Step | cosine_ndcg@10 |
498
+ |:-----:|:----:|:--------------:|
499
+ | 1.0 | 40 | 0.9506 |
500
+ | 1.25 | 50 | 0.9621 |
501
+ | 2.0 | 80 | 0.9492 |
502
+ | 2.5 | 100 | 0.9478 |
503
+ | 3.0 | 120 | 0.9519 |
504
+ | 3.75 | 150 | 0.9611 |
505
+ | 4.0 | 160 | 0.9596 |
506
+ | 5.0 | 200 | 0.9715 |
507
+ | 6.0 | 240 | 0.9742 |
508
+ | 6.25 | 250 | 0.9665 |
509
+ | 7.0 | 280 | 0.9588 |
510
+ | 7.5 | 300 | 0.9665 |
511
+ | 8.0 | 320 | 0.9665 |
512
+ | 8.75 | 350 | 0.9638 |
513
+ | 9.0 | 360 | 0.9638 |
514
+ | 10.0 | 400 | 0.9665 |
515
+
516
+
517
+ ### Framework Versions
518
+ - Python: 3.13.0
519
+ - Sentence Transformers: 3.4.1
520
+ - Transformers: 4.48.3
521
+ - PyTorch: 2.6.0
522
+ - Accelerate: 1.3.0
523
+ - Datasets: 3.2.0
524
+ - Tokenizers: 0.21.0
525
+
526
+ ## Citation
527
+
528
+ ### BibTeX
529
+
530
+ #### Sentence Transformers
531
+ ```bibtex
532
+ @inproceedings{reimers-2019-sentence-bert,
533
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
534
+ author = "Reimers, Nils and Gurevych, Iryna",
535
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
536
+ month = "11",
537
+ year = "2019",
538
+ publisher = "Association for Computational Linguistics",
539
+ url = "https://arxiv.org/abs/1908.10084",
540
+ }
541
+ ```
542
+
543
+ #### MatryoshkaLoss
544
+ ```bibtex
545
+ @misc{kusupati2024matryoshka,
546
+ title={Matryoshka Representation Learning},
547
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
548
+ year={2024},
549
+ eprint={2205.13147},
550
+ archivePrefix={arXiv},
551
+ primaryClass={cs.LG}
552
+ }
553
+ ```
554
+
555
+ #### MultipleNegativesRankingLoss
556
+ ```bibtex
557
+ @misc{henderson2017efficient,
558
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
559
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
560
+ year={2017},
561
+ eprint={1705.00652},
562
+ archivePrefix={arXiv},
563
+ primaryClass={cs.CL}
564
+ }
565
+ ```
566
+
567
+ <!--
568
+ ## Glossary
569
+
570
+ *Clearly define terms in order to be accessible across audiences.*
571
+ -->
572
+
573
+ <!--
574
+ ## Model Card Authors
575
+
576
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
577
+ -->
578
+
579
+ <!--
580
+ ## Model Card Contact
581
+
582
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
583
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b86da82e5cd432402a3674970199b2b39394b6fe2a464b003f188976720cc71
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff