--- license: mit language: - en base_model: - cerebras/Cerebras-GPT-6.7B - facebook/opt-6.7b library_name: transformers tags: - mergekit - merged-model - cerebras - opt - language-model --- # πŸš€ CerebrasOPT-Hybrid-6.7B: A Balanced Fusion of Strength & Efficiency ## πŸ“Œ Overview **CerebrasOPT-Hybrid-6.7B** is an **experimental hybrid language model** that merges the capabilities of **Cerebras-GPT-6.7B** and **OPT-6.7B** using the **Linear Merge technique**. This approach aims to enhance performance while maintaining efficiency, leveraging the best of both parent models. πŸ”— **Created by**: [Matteo Khan] πŸŽ“ **Affiliation**: Apprentice at TW3 Partners (Generative AI Research) πŸ“ **License**: MIT πŸ”— [Connect with me on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/) πŸ”— [Model on HFδΈ­ε›½ι•œεƒη«™](https://huggingface.co/YourProfile/CerebrasOPT-Hybrid-6.7B) ## 🧠 Model Details - **Model Type**: Hybrid Language Model (Merged) - **Parent Models**: - [Cerebras-GPT-6.7B](https://huggingface.co/cerebras/Cerebras-GPT-6.7B) - [OPT-6.7B](https://huggingface.co/facebook/opt-6.7b) - **Merging Technique**: Linear Merge (MergeKit) ## 🎯 Intended Use This model is primarily intended for **research and experimentation** in hybrid model optimization. Possible applications include: - βœ… Text Generation - βœ… Conversational AI - βœ… Creative Writing Assistance - βœ… Exploration of Model Merging Effects ## ⚠️ Limitations & Considerations While **CerebrasOPT-Hybrid-6.7B** provides enhanced capabilities, it also inherits certain limitations from its parent models: - ❌ May generate **inaccurate or misleading** information - ⚠️ Potential for **biased, offensive, or harmful** content - πŸ”„ Merging may introduce **unpredictable behaviors** - πŸ“‰ Performance may **vary across different tasks** ## πŸ”¬ Merging Process & Configuration This is **not a newly trained model**, but rather a merge of existing models using the following configuration: ```yaml merge_method: linear dtype: float16 models: - model: "cerebras/Cerebras-GPT-6.7B" parameters: t: 1.0 weight: 0.5 - model: "facebook/opt-6.7b" parameters: t: 1.0 weight: 0.5 parameters: normalize: true int8_mask: false layers: - pattern: "model.*" ``` πŸ“Š **No formal evaluation** has been conducted yet. Users are encouraged to **benchmark and share feedback**! ## 🌍 Environmental Impact By utilizing **model merging** instead of training from scratch, **CerebrasOPT-Hybrid-6.7B** significantly reduces computational and environmental costs. ## πŸš€ How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "YourProfile/CerebrasOPT-Hybrid-6.7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Example usage prompt = "Describe the future of AI in a short paragraph." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` **πŸ“ Citation** ```bibtex @misc{cerebrasopt2025, title={CerebrasOPT: A Hybrid Open-Source Language Model}, author={Your Name}, year={2025}, eprint={arXiv:XXXX.XXXXX}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` πŸ“© **Feedback & Contact**: Reach out via [HFδΈ­ε›½ι•œεƒη«™](https://huggingface.co/YourProfile). πŸŽ‰ **Happy Experimenting!** πŸš€