Update README.md
Browse files
README.md
CHANGED
@@ -137,28 +137,29 @@ For a better experience, we recommend to use [the following generation parameter
|
|
137 |
### Tool Use
|
138 |
|
139 |
```python
|
140 |
-
def
|
141 |
"""
|
142 |
-
Obtener
|
143 |
|
144 |
Args:
|
145 |
location: La locaización, con el siguiente formato: "Ciudad, País."
|
146 |
-
date: La fecha, en el formato AAAA-MM-DD.
|
147 |
Returns:
|
148 |
-
El tiempo en dicha localización.
|
149 |
"""
|
150 |
-
return
|
|
|
151 |
|
152 |
messages = [
|
153 |
-
{"role": "user", "content": "
|
154 |
]
|
155 |
|
156 |
text = tokenizer.apply_chat_template(
|
157 |
messages,
|
158 |
tokenize=False,
|
159 |
-
tools=[
|
160 |
add_generation_prompt=True
|
161 |
)
|
|
|
162 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
163 |
|
164 |
generated_ids = model.generate(
|
@@ -170,10 +171,69 @@ generated_ids = [
|
|
170 |
]
|
171 |
|
172 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
173 |
```
|
174 |
|
175 |
Check the [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) from HuggingFace for more information.
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
## Training Details
|
178 |
|
179 |
### Training Data
|
|
|
137 |
### Tool Use
|
138 |
|
139 |
```python
|
140 |
+
def obtener_temperatura_actual(location: str) -> float:
|
141 |
"""
|
142 |
+
Obtener la temperatura actual de una localización.
|
143 |
|
144 |
Args:
|
145 |
location: La locaización, con el siguiente formato: "Ciudad, País."
|
|
|
146 |
Returns:
|
147 |
+
El tiempo en dicha localización, en grados Celsius.
|
148 |
"""
|
149 |
+
return 22.
|
150 |
+
|
151 |
|
152 |
messages = [
|
153 |
+
{"role": "user", "content": "¿Cuál es el tiempo en Madrid ahora mismo?"}
|
154 |
]
|
155 |
|
156 |
text = tokenizer.apply_chat_template(
|
157 |
messages,
|
158 |
tokenize=False,
|
159 |
+
tools=[obtener_temperatura_actual],
|
160 |
add_generation_prompt=True
|
161 |
)
|
162 |
+
|
163 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
164 |
|
165 |
generated_ids = model.generate(
|
|
|
171 |
]
|
172 |
|
173 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
174 |
+
print(response)
|
175 |
```
|
176 |
|
177 |
Check the [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) from HuggingFace for more information.
|
178 |
|
179 |
+
If the model generates a tool call, you should add it to the chat like so:
|
180 |
+
|
181 |
+
```python
|
182 |
+
import re
|
183 |
+
import json
|
184 |
+
|
185 |
+
tools = {
|
186 |
+
"obtener_temperatura_actual" : obtener_temperatura_actual,
|
187 |
+
}
|
188 |
+
|
189 |
+
tool_call = re.search(
|
190 |
+
r"<tool_call>\s*(\{.*?\})\s*</tool_call>",
|
191 |
+
response,
|
192 |
+
)
|
193 |
+
tool_call = json.loads(tool_call.group(1))
|
194 |
+
|
195 |
+
# Add tool metadata to messages
|
196 |
+
messages.append(
|
197 |
+
{
|
198 |
+
"role": "assistant",
|
199 |
+
"tool_calls": [{"type": "function", "function": tool_call}],
|
200 |
+
},
|
201 |
+
)
|
202 |
+
|
203 |
+
# Add tool result to messages
|
204 |
+
messages.append(
|
205 |
+
{
|
206 |
+
"role": "tool",
|
207 |
+
"name": tool_call["name"],
|
208 |
+
"content": tools[tool_call["name"]](**tool_call["arguments"]),
|
209 |
+
},
|
210 |
+
)
|
211 |
+
```
|
212 |
+
|
213 |
+
The above code is intended only for when the model generates a function call, but the same logic can be used if several functions are called at the same time. After that, you can continue to generate messages as normal:
|
214 |
+
|
215 |
+
```python
|
216 |
+
text = tokenizer.apply_chat_template(
|
217 |
+
messages,
|
218 |
+
tokenize=False,
|
219 |
+
tools=[obtener_temperatura_actual],
|
220 |
+
add_generation_prompt=True
|
221 |
+
)
|
222 |
+
|
223 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
224 |
+
|
225 |
+
generated_ids = model.generate(
|
226 |
+
**model_inputs,
|
227 |
+
max_new_tokens=1024
|
228 |
+
)
|
229 |
+
generated_ids = [
|
230 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
231 |
+
]
|
232 |
+
|
233 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
234 |
+
print(response)
|
235 |
+
```
|
236 |
+
|
237 |
## Training Details
|
238 |
|
239 |
### Training Data
|