alpha: 0.25 base_model: meta-llama/Llama-3.2-1B-Instruct custom_name: d4-a0.25 dtype: bfloat16 lambdas: - 1.0 - 1.0 - 1.0 lora_config: null metric: null original_datasets: - !!python/object/apply:finetuning.dataset.DatasetType - AlpacaGPT4 - !!python/object/apply:finetuning.dataset.DatasetType - OpenWebText proportions: - 0.1 - 0.1 training_args: bf16: false do_train: true fp16: false gradient_accumulation_steps: 8 gradient_checkpointing: false hub_strategy: all_checkpoints learning_rate: 2.0e-05 logging_steps: 10 lr_scheduler_type: cosine max_steps: 2500 num_train_epochs: 1 optim: adafactor output_dir: Grogros/dmWM-llama-3.2-1B-Instruct-HarmData-Al4-OWT-d4-a0.25 overwrite_output_dir: true per_device_train_batch_size: 4 push_to_hub: true save_steps: 500 save_strategy: steps warmup_ratio: 0.1 watermark_datasets: - !!python/object/apply:finetuning.dataset.DatasetType - HarmData watermark_eval_config: []